General formula for $int_0^{pi/2} tan^{alpha}(x) dx$?












3












$begingroup$


There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?



More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
    $endgroup$
    – robjohn
    Feb 1 at 4:03
















3












$begingroup$


There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?



More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
    $endgroup$
    – robjohn
    Feb 1 at 4:03














3












3








3


1



$begingroup$


There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?



More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$










share|cite|improve this question









$endgroup$




There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?



More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$







calculus integration improper-integrals gamma-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 1 at 3:39









Holding ArthurHolding Arthur

1,555417




1,555417












  • $begingroup$
    Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
    $endgroup$
    – robjohn
    Feb 1 at 4:03


















  • $begingroup$
    Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
    $endgroup$
    – robjohn
    Feb 1 at 4:03
















$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn
Feb 1 at 4:03




$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn
Feb 1 at 4:03










3 Answers
3






active

oldest

votes


















4












$begingroup$

With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Consider the integral
    $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
    Setting $t=sin(x)^2$:
    $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
    Then recall the definition of the beta function
    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
    We use this to see that
    $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
    Hence
    $$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
    Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
    It can be easily shown that
    $$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
    So
    $$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
    Which you know works for $|a|<1$.





    This can be used to show that
    $$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
    Or simply
    $$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
    To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.






    share|cite|improve this answer











    $endgroup$





















      2












      $begingroup$

      $$
      begin{align}
      int_0^{pi/2}tan^alpha(x),mathrm{d}x
      &=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
      &=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
      &=fracpi2secleft(frac{pialpha}2right)tag3
      end{align}
      $$

      Explanation:
      $(1)$: substitute $xmapstoarctan(x)$
      $(2)$: use this answer
      $(3)$: trigonometric identity






      share|cite|improve this answer











      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095790%2fgeneral-formula-for-int-0-pi-2-tan-alphax-dx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        With $u=tan x$, we have
        $$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
        Now, according to this question:
        $$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
        So, plugging in $beta=frac pi 2$ yields
        $$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$






        share|cite|improve this answer









        $endgroup$


















          4












          $begingroup$

          With $u=tan x$, we have
          $$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
          Now, according to this question:
          $$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
          So, plugging in $beta=frac pi 2$ yields
          $$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$






          share|cite|improve this answer









          $endgroup$
















            4












            4








            4





            $begingroup$

            With $u=tan x$, we have
            $$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
            Now, according to this question:
            $$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
            So, plugging in $beta=frac pi 2$ yields
            $$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$






            share|cite|improve this answer









            $endgroup$



            With $u=tan x$, we have
            $$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
            Now, according to this question:
            $$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
            So, plugging in $beta=frac pi 2$ yields
            $$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 1 at 3:56









            Stefan LafonStefan Lafon

            3,005212




            3,005212























                2












                $begingroup$

                Consider the integral
                $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
                Setting $t=sin(x)^2$:
                $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
                Then recall the definition of the beta function
                $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
                We use this to see that
                $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                Hence
                $$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
                Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
                It can be easily shown that
                $$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
                So
                $$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
                Which you know works for $|a|<1$.





                This can be used to show that
                $$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
                Or simply
                $$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
                To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  Consider the integral
                  $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
                  Setting $t=sin(x)^2$:
                  $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
                  Then recall the definition of the beta function
                  $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
                  We use this to see that
                  $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                  Hence
                  $$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
                  Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
                  It can be easily shown that
                  $$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
                  So
                  $$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
                  Which you know works for $|a|<1$.





                  This can be used to show that
                  $$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
                  Or simply
                  $$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
                  To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Consider the integral
                    $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
                    Setting $t=sin(x)^2$:
                    $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
                    Then recall the definition of the beta function
                    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
                    We use this to see that
                    $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                    Hence
                    $$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
                    Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
                    It can be easily shown that
                    $$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
                    So
                    $$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
                    Which you know works for $|a|<1$.





                    This can be used to show that
                    $$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
                    Or simply
                    $$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
                    To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.






                    share|cite|improve this answer











                    $endgroup$



                    Consider the integral
                    $$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
                    Setting $t=sin(x)^2$:
                    $$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
                    Then recall the definition of the beta function
                    $$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
                    We use this to see that
                    $$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                    Hence
                    $$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
                    Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
                    It can be easily shown that
                    $$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
                    So
                    $$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
                    Which you know works for $|a|<1$.





                    This can be used to show that
                    $$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
                    Or simply
                    $$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
                    To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 1 at 4:32

























                    answered Feb 1 at 4:25









                    clathratusclathratus

                    5,1141439




                    5,1141439























                        2












                        $begingroup$

                        $$
                        begin{align}
                        int_0^{pi/2}tan^alpha(x),mathrm{d}x
                        &=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
                        &=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
                        &=fracpi2secleft(frac{pialpha}2right)tag3
                        end{align}
                        $$

                        Explanation:
                        $(1)$: substitute $xmapstoarctan(x)$
                        $(2)$: use this answer
                        $(3)$: trigonometric identity






                        share|cite|improve this answer











                        $endgroup$


















                          2












                          $begingroup$

                          $$
                          begin{align}
                          int_0^{pi/2}tan^alpha(x),mathrm{d}x
                          &=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
                          &=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
                          &=fracpi2secleft(frac{pialpha}2right)tag3
                          end{align}
                          $$

                          Explanation:
                          $(1)$: substitute $xmapstoarctan(x)$
                          $(2)$: use this answer
                          $(3)$: trigonometric identity






                          share|cite|improve this answer











                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            $$
                            begin{align}
                            int_0^{pi/2}tan^alpha(x),mathrm{d}x
                            &=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
                            &=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
                            &=fracpi2secleft(frac{pialpha}2right)tag3
                            end{align}
                            $$

                            Explanation:
                            $(1)$: substitute $xmapstoarctan(x)$
                            $(2)$: use this answer
                            $(3)$: trigonometric identity






                            share|cite|improve this answer











                            $endgroup$



                            $$
                            begin{align}
                            int_0^{pi/2}tan^alpha(x),mathrm{d}x
                            &=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
                            &=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
                            &=fracpi2secleft(frac{pialpha}2right)tag3
                            end{align}
                            $$

                            Explanation:
                            $(1)$: substitute $xmapstoarctan(x)$
                            $(2)$: use this answer
                            $(3)$: trigonometric identity







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Feb 1 at 4:56

























                            answered Feb 1 at 3:57









                            robjohnrobjohn

                            270k27313642




                            270k27313642






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095790%2fgeneral-formula-for-int-0-pi-2-tan-alphax-dx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                SQL update select statement

                                'app-layout' is not a known element: how to share Component with different Modules