General formula for $int_0^{pi/2} tan^{alpha}(x) dx$?
$begingroup$
There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?
More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$
calculus integration improper-integrals gamma-function
$endgroup$
add a comment |
$begingroup$
There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?
More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$
calculus integration improper-integrals gamma-function
$endgroup$
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03
add a comment |
$begingroup$
There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?
More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$
calculus integration improper-integrals gamma-function
$endgroup$
There are already questions about how to find $int tan^{1/2}(x) dx$. But how to derive a general formula for $int_0^{pi/2} tan^{alpha}(x) dx$ (which converges if $|alpha|<1$) ?
More details: I have to evaluate this integral because I want to derive Euler's reflection formula for gamma functions. The integral above is the result of using a substitution $v=tan^2(x)$ in $int_0^infty frac{v^beta}{1+v} dv$
calculus integration improper-integrals gamma-function
calculus integration improper-integrals gamma-function
asked Feb 1 at 3:39
Holding ArthurHolding Arthur
1,555417
1,555417
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03
add a comment |
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
Setting $t=sin(x)^2$:
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
Then recall the definition of the beta function
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
We use this to see that
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
Hence
$$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
It can be easily shown that
$$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
So
$$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
Or simply
$$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
int_0^{pi/2}tan^alpha(x),mathrm{d}x
&=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
&=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
&=fracpi2secleft(frac{pialpha}2right)tag3
end{align}
$$
Explanation:
$(1)$: substitute $xmapstoarctan(x)$
$(2)$: use this answer
$(3)$: trigonometric identity
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095790%2fgeneral-formula-for-int-0-pi-2-tan-alphax-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$
$endgroup$
add a comment |
$begingroup$
With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$
$endgroup$
add a comment |
$begingroup$
With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$
$endgroup$
With $u=tan x$, we have
$$int_0^{frac pi 2} tan^alpha (x)dx=int_0^{+infty}frac{u^alpha}{1+u^2}du$$
Now, according to this question:
$$int_0^infty frac{x^{alpha}dx}{1+2xcosbeta +x^{2}}=frac{pisin (alphabeta)}{sin (alphapi)sin beta }$$
So, plugging in $beta=frac pi 2$ yields
$$int_0^{frac pi 2} tan^alpha (x)dx=frac{pisin(frac {alpha pi}2)}{sin(alpha pi)}=frac{pi}{2cos(frac{alphapi}{2})}$$
answered Feb 1 at 3:56
Stefan LafonStefan Lafon
3,005212
3,005212
add a comment |
add a comment |
$begingroup$
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
Setting $t=sin(x)^2$:
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
Then recall the definition of the beta function
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
We use this to see that
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
Hence
$$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
It can be easily shown that
$$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
So
$$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
Or simply
$$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
Setting $t=sin(x)^2$:
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
Then recall the definition of the beta function
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
We use this to see that
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
Hence
$$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
It can be easily shown that
$$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
So
$$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
Or simply
$$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
Setting $t=sin(x)^2$:
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
Then recall the definition of the beta function
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
We use this to see that
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
Hence
$$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
It can be easily shown that
$$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
So
$$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
Or simply
$$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.
$endgroup$
Consider the integral
$$I(a,b)=int_0^{pi/2}sin(x)^acos(x)^bmathrm dx,qquad a,b>-1$$
Setting $t=sin(x)^2$:
$$I(a,b)=frac12int_0^1t^{frac{a-1}2}(1-t)^{frac{b-1}2}mathrm dt$$
Then recall the definition of the beta function
$$mathrm{B}(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
We use this to see that
$$I(a,b)=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
Hence
$$int_0^{pi/2}tan(x)^amathrm dx=frac12Gammaleft(frac{1+a}2right)Gammaleft(frac{1-a}2right)$$
Then using $$Gamma(1-s)Gamma(s)=frac{pi}{sinpi s}$$
It can be easily shown that
$$Gammaleft(frac{1+s}2right)Gammaleft(frac{1-s}2right)=pisecfrac{pi s}2$$
So
$$int_0^{pi/2}tan(x)^amathrm dx=fracpi2secfrac{pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$int_0^{pi/2} log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2,bigg|_{a=0}$$
Or simply
$$int_0^{pi/2} tan(x)^{a}log^{n}[tan x]mathrm dx=fracpi2left(frac{d}{da}right)^nsecfrac{pi a}2$$
To show this just take $left(frac{d}{da}right)^n$ on both sides for integer $n$.
edited Feb 1 at 4:32
answered Feb 1 at 4:25
clathratusclathratus
5,1141439
5,1141439
add a comment |
add a comment |
$begingroup$
$$
begin{align}
int_0^{pi/2}tan^alpha(x),mathrm{d}x
&=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
&=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
&=fracpi2secleft(frac{pialpha}2right)tag3
end{align}
$$
Explanation:
$(1)$: substitute $xmapstoarctan(x)$
$(2)$: use this answer
$(3)$: trigonometric identity
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
int_0^{pi/2}tan^alpha(x),mathrm{d}x
&=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
&=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
&=fracpi2secleft(frac{pialpha}2right)tag3
end{align}
$$
Explanation:
$(1)$: substitute $xmapstoarctan(x)$
$(2)$: use this answer
$(3)$: trigonometric identity
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
int_0^{pi/2}tan^alpha(x),mathrm{d}x
&=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
&=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
&=fracpi2secleft(frac{pialpha}2right)tag3
end{align}
$$
Explanation:
$(1)$: substitute $xmapstoarctan(x)$
$(2)$: use this answer
$(3)$: trigonometric identity
$endgroup$
$$
begin{align}
int_0^{pi/2}tan^alpha(x),mathrm{d}x
&=int_0^inftyfrac{x^alpha}{1+x^2},mathrm{d}xtag1\
&=fracpi2cscleft(pifrac{alpha+1}2right)tag2\[3pt]
&=fracpi2secleft(frac{pialpha}2right)tag3
end{align}
$$
Explanation:
$(1)$: substitute $xmapstoarctan(x)$
$(2)$: use this answer
$(3)$: trigonometric identity
edited Feb 1 at 4:56
answered Feb 1 at 3:57
robjohn♦robjohn
270k27313642
270k27313642
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095790%2fgeneral-formula-for-int-0-pi-2-tan-alphax-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Euler's Reflection Formula is proven in this answer, which is referenced in my answer below.
$endgroup$
– robjohn♦
Feb 1 at 4:03