equating coefficients in algebraic expansion












1












$begingroup$


If $displaystyle bigg(frac{1+x}{1-x}bigg)^n=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots +infty,$ then value of



$(1); displaystyle frac{3b_{3}-b_{1}}{b_{2}}$



$(2); displaystyle frac{2b_{4}-b_{2}}{b_{3}}$



$(3); displaystyle frac{3b_{6}-2b_{4}}{b_{5}}$



$(4); displaystyle frac{5b_{10}-4b_{8}}{b_{9}}$



Answers given in $n,2n,3n,4n$ formats



What I tried:



$displaystyle (1+x)^n(1-x)^{-n}=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots cdots infty$



$displaystyle bigg[1+nx+frac{n(n-1)}{2}x^2+frac{n(n-1)(n-2)}{6}cdots bigg]bigg[1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+cdots bigg]=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots $



$displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$



How do I find other coefficients? Help me, please.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    If $displaystyle bigg(frac{1+x}{1-x}bigg)^n=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots +infty,$ then value of



    $(1); displaystyle frac{3b_{3}-b_{1}}{b_{2}}$



    $(2); displaystyle frac{2b_{4}-b_{2}}{b_{3}}$



    $(3); displaystyle frac{3b_{6}-2b_{4}}{b_{5}}$



    $(4); displaystyle frac{5b_{10}-4b_{8}}{b_{9}}$



    Answers given in $n,2n,3n,4n$ formats



    What I tried:



    $displaystyle (1+x)^n(1-x)^{-n}=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots cdots infty$



    $displaystyle bigg[1+nx+frac{n(n-1)}{2}x^2+frac{n(n-1)(n-2)}{6}cdots bigg]bigg[1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+cdots bigg]=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots $



    $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$



    How do I find other coefficients? Help me, please.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      If $displaystyle bigg(frac{1+x}{1-x}bigg)^n=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots +infty,$ then value of



      $(1); displaystyle frac{3b_{3}-b_{1}}{b_{2}}$



      $(2); displaystyle frac{2b_{4}-b_{2}}{b_{3}}$



      $(3); displaystyle frac{3b_{6}-2b_{4}}{b_{5}}$



      $(4); displaystyle frac{5b_{10}-4b_{8}}{b_{9}}$



      Answers given in $n,2n,3n,4n$ formats



      What I tried:



      $displaystyle (1+x)^n(1-x)^{-n}=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots cdots infty$



      $displaystyle bigg[1+nx+frac{n(n-1)}{2}x^2+frac{n(n-1)(n-2)}{6}cdots bigg]bigg[1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+cdots bigg]=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots $



      $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$



      How do I find other coefficients? Help me, please.










      share|cite|improve this question











      $endgroup$




      If $displaystyle bigg(frac{1+x}{1-x}bigg)^n=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots +infty,$ then value of



      $(1); displaystyle frac{3b_{3}-b_{1}}{b_{2}}$



      $(2); displaystyle frac{2b_{4}-b_{2}}{b_{3}}$



      $(3); displaystyle frac{3b_{6}-2b_{4}}{b_{5}}$



      $(4); displaystyle frac{5b_{10}-4b_{8}}{b_{9}}$



      Answers given in $n,2n,3n,4n$ formats



      What I tried:



      $displaystyle (1+x)^n(1-x)^{-n}=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots cdots infty$



      $displaystyle bigg[1+nx+frac{n(n-1)}{2}x^2+frac{n(n-1)(n-2)}{6}cdots bigg]bigg[1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+cdots bigg]=1+b_{1}x+b_{2}x^2+b_{3}x^3+cdots $



      $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$



      How do I find other coefficients? Help me, please.







      binomial-theorem






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 1 at 5:37









      J. W. Tanner

      4,6441420




      4,6441420










      asked Feb 1 at 5:03









      jackyjacky

      1,344816




      1,344816






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          You made a mistake. It is not $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$ , but



          $b_{1}=2n$



          $b_{2}=2n^2$



          $b_{3}=frac23(n+2n^3)$



          To go up to $b_{10}$, the series has to be expended up to $x^{10}$.



          By brut force :



          $b_{4}=frac23(2n^2+n^4)$



          $b_{5}=frac{2}{15}(3n+10n^3+2n^5)$



          $b_{6}=frac{2}{45}(23n^2+20n^4+2n^6)$



          $b_{7}=frac{2}{315}(45n+196n^3+70n^5+4n^7)$



          $b_{8}=frac{2}{315}(132n^2+154n^4+28n^6+n^8)$



          $b_{9}=frac{2}{2835}(315n+1636n^3+798n^5+84n^7+2n^8)$



          $b_{10}=frac{2}{14175}(5167n^2+7180n^4+1806n^6+120n^8+2n^{10})$



          $frac{3b_{3}-b_{1}}{b_{2}}=2n$



          Then, a supposed recurrence :



          $frac{1b_{2}-0b_{0}}{b_{1}}=n$



          $frac{2b_{4}-1b_{2}}{b_{3}}=n$



          $frac{3b_{6}-2b_{4}}{b_{5}}=n$



          $frac{4b_{8}-3b_{6}}{b_{7}}=n$



          $frac{5b_{10}-4b_{8}}{b_{9}}=n$



          $...$



          $frac{k,b_{2k}-(k-1)b_{2k-2}}{b_{2k-1}}=n$ , not proved.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Here is a slightly different method to find the coefficients. It is convenient to use the coefficient of operator $[x^j]$ to denote the coefficient of $x^j$ in a series.




            We obtain
            begin{align*}
            color{blue}{[x^j]left(frac{1+x}{1-x}right)^n}
            &=[x^j](1-x)^{-n}(1+x)^n\
            &=[x^j]sum_{k=0}^inftybinom{-n}{k}(-x)^k(1+x)^ntag{1}\
            &=[x^j]sum_{k=0}^inftybinom{n+k-1}{k}x^k(1+x)^ntag{2}\
            &=sum_{k=0}^jbinom{n+k-1}{k}[x^{j-k}](1+x)^ntag{3}\
            &,,color{blue}{=sum_{k=0}^jbinom{n+k-1}{k}binom{n}{j-k}}tag{4}
            end{align*}




            Comment:




            • In (1) we apply the binomial series expansion


            • In (2) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$


            • In (3) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$. We also set the upper limit of the sum to $j$ since other values do not contribute.


            • In (4) we select the coefficient of $[x^{j-k}](1+x)^n=[x^{j-k}]sum_{t=0}^nbinom{n}{t}x^t$.







            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095847%2fequating-coefficients-in-algebraic-expansion%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              You made a mistake. It is not $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$ , but



              $b_{1}=2n$



              $b_{2}=2n^2$



              $b_{3}=frac23(n+2n^3)$



              To go up to $b_{10}$, the series has to be expended up to $x^{10}$.



              By brut force :



              $b_{4}=frac23(2n^2+n^4)$



              $b_{5}=frac{2}{15}(3n+10n^3+2n^5)$



              $b_{6}=frac{2}{45}(23n^2+20n^4+2n^6)$



              $b_{7}=frac{2}{315}(45n+196n^3+70n^5+4n^7)$



              $b_{8}=frac{2}{315}(132n^2+154n^4+28n^6+n^8)$



              $b_{9}=frac{2}{2835}(315n+1636n^3+798n^5+84n^7+2n^8)$



              $b_{10}=frac{2}{14175}(5167n^2+7180n^4+1806n^6+120n^8+2n^{10})$



              $frac{3b_{3}-b_{1}}{b_{2}}=2n$



              Then, a supposed recurrence :



              $frac{1b_{2}-0b_{0}}{b_{1}}=n$



              $frac{2b_{4}-1b_{2}}{b_{3}}=n$



              $frac{3b_{6}-2b_{4}}{b_{5}}=n$



              $frac{4b_{8}-3b_{6}}{b_{7}}=n$



              $frac{5b_{10}-4b_{8}}{b_{9}}=n$



              $...$



              $frac{k,b_{2k}-(k-1)b_{2k-2}}{b_{2k-1}}=n$ , not proved.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                You made a mistake. It is not $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$ , but



                $b_{1}=2n$



                $b_{2}=2n^2$



                $b_{3}=frac23(n+2n^3)$



                To go up to $b_{10}$, the series has to be expended up to $x^{10}$.



                By brut force :



                $b_{4}=frac23(2n^2+n^4)$



                $b_{5}=frac{2}{15}(3n+10n^3+2n^5)$



                $b_{6}=frac{2}{45}(23n^2+20n^4+2n^6)$



                $b_{7}=frac{2}{315}(45n+196n^3+70n^5+4n^7)$



                $b_{8}=frac{2}{315}(132n^2+154n^4+28n^6+n^8)$



                $b_{9}=frac{2}{2835}(315n+1636n^3+798n^5+84n^7+2n^8)$



                $b_{10}=frac{2}{14175}(5167n^2+7180n^4+1806n^6+120n^8+2n^{10})$



                $frac{3b_{3}-b_{1}}{b_{2}}=2n$



                Then, a supposed recurrence :



                $frac{1b_{2}-0b_{0}}{b_{1}}=n$



                $frac{2b_{4}-1b_{2}}{b_{3}}=n$



                $frac{3b_{6}-2b_{4}}{b_{5}}=n$



                $frac{4b_{8}-3b_{6}}{b_{7}}=n$



                $frac{5b_{10}-4b_{8}}{b_{9}}=n$



                $...$



                $frac{k,b_{2k}-(k-1)b_{2k-2}}{b_{2k-1}}=n$ , not proved.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  You made a mistake. It is not $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$ , but



                  $b_{1}=2n$



                  $b_{2}=2n^2$



                  $b_{3}=frac23(n+2n^3)$



                  To go up to $b_{10}$, the series has to be expended up to $x^{10}$.



                  By brut force :



                  $b_{4}=frac23(2n^2+n^4)$



                  $b_{5}=frac{2}{15}(3n+10n^3+2n^5)$



                  $b_{6}=frac{2}{45}(23n^2+20n^4+2n^6)$



                  $b_{7}=frac{2}{315}(45n+196n^3+70n^5+4n^7)$



                  $b_{8}=frac{2}{315}(132n^2+154n^4+28n^6+n^8)$



                  $b_{9}=frac{2}{2835}(315n+1636n^3+798n^5+84n^7+2n^8)$



                  $b_{10}=frac{2}{14175}(5167n^2+7180n^4+1806n^6+120n^8+2n^{10})$



                  $frac{3b_{3}-b_{1}}{b_{2}}=2n$



                  Then, a supposed recurrence :



                  $frac{1b_{2}-0b_{0}}{b_{1}}=n$



                  $frac{2b_{4}-1b_{2}}{b_{3}}=n$



                  $frac{3b_{6}-2b_{4}}{b_{5}}=n$



                  $frac{4b_{8}-3b_{6}}{b_{7}}=n$



                  $frac{5b_{10}-4b_{8}}{b_{9}}=n$



                  $...$



                  $frac{k,b_{2k}-(k-1)b_{2k-2}}{b_{2k-1}}=n$ , not proved.






                  share|cite|improve this answer









                  $endgroup$



                  You made a mistake. It is not $displaystyle b_{1}=n,b_{2}=n,b_{3}=4n^2$ , but



                  $b_{1}=2n$



                  $b_{2}=2n^2$



                  $b_{3}=frac23(n+2n^3)$



                  To go up to $b_{10}$, the series has to be expended up to $x^{10}$.



                  By brut force :



                  $b_{4}=frac23(2n^2+n^4)$



                  $b_{5}=frac{2}{15}(3n+10n^3+2n^5)$



                  $b_{6}=frac{2}{45}(23n^2+20n^4+2n^6)$



                  $b_{7}=frac{2}{315}(45n+196n^3+70n^5+4n^7)$



                  $b_{8}=frac{2}{315}(132n^2+154n^4+28n^6+n^8)$



                  $b_{9}=frac{2}{2835}(315n+1636n^3+798n^5+84n^7+2n^8)$



                  $b_{10}=frac{2}{14175}(5167n^2+7180n^4+1806n^6+120n^8+2n^{10})$



                  $frac{3b_{3}-b_{1}}{b_{2}}=2n$



                  Then, a supposed recurrence :



                  $frac{1b_{2}-0b_{0}}{b_{1}}=n$



                  $frac{2b_{4}-1b_{2}}{b_{3}}=n$



                  $frac{3b_{6}-2b_{4}}{b_{5}}=n$



                  $frac{4b_{8}-3b_{6}}{b_{7}}=n$



                  $frac{5b_{10}-4b_{8}}{b_{9}}=n$



                  $...$



                  $frac{k,b_{2k}-(k-1)b_{2k-2}}{b_{2k-1}}=n$ , not proved.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 1 at 7:27









                  JJacquelinJJacquelin

                  45.6k21857




                  45.6k21857























                      1












                      $begingroup$

                      Here is a slightly different method to find the coefficients. It is convenient to use the coefficient of operator $[x^j]$ to denote the coefficient of $x^j$ in a series.




                      We obtain
                      begin{align*}
                      color{blue}{[x^j]left(frac{1+x}{1-x}right)^n}
                      &=[x^j](1-x)^{-n}(1+x)^n\
                      &=[x^j]sum_{k=0}^inftybinom{-n}{k}(-x)^k(1+x)^ntag{1}\
                      &=[x^j]sum_{k=0}^inftybinom{n+k-1}{k}x^k(1+x)^ntag{2}\
                      &=sum_{k=0}^jbinom{n+k-1}{k}[x^{j-k}](1+x)^ntag{3}\
                      &,,color{blue}{=sum_{k=0}^jbinom{n+k-1}{k}binom{n}{j-k}}tag{4}
                      end{align*}




                      Comment:




                      • In (1) we apply the binomial series expansion


                      • In (2) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$


                      • In (3) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$. We also set the upper limit of the sum to $j$ since other values do not contribute.


                      • In (4) we select the coefficient of $[x^{j-k}](1+x)^n=[x^{j-k}]sum_{t=0}^nbinom{n}{t}x^t$.







                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Here is a slightly different method to find the coefficients. It is convenient to use the coefficient of operator $[x^j]$ to denote the coefficient of $x^j$ in a series.




                        We obtain
                        begin{align*}
                        color{blue}{[x^j]left(frac{1+x}{1-x}right)^n}
                        &=[x^j](1-x)^{-n}(1+x)^n\
                        &=[x^j]sum_{k=0}^inftybinom{-n}{k}(-x)^k(1+x)^ntag{1}\
                        &=[x^j]sum_{k=0}^inftybinom{n+k-1}{k}x^k(1+x)^ntag{2}\
                        &=sum_{k=0}^jbinom{n+k-1}{k}[x^{j-k}](1+x)^ntag{3}\
                        &,,color{blue}{=sum_{k=0}^jbinom{n+k-1}{k}binom{n}{j-k}}tag{4}
                        end{align*}




                        Comment:




                        • In (1) we apply the binomial series expansion


                        • In (2) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$


                        • In (3) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$. We also set the upper limit of the sum to $j$ since other values do not contribute.


                        • In (4) we select the coefficient of $[x^{j-k}](1+x)^n=[x^{j-k}]sum_{t=0}^nbinom{n}{t}x^t$.







                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Here is a slightly different method to find the coefficients. It is convenient to use the coefficient of operator $[x^j]$ to denote the coefficient of $x^j$ in a series.




                          We obtain
                          begin{align*}
                          color{blue}{[x^j]left(frac{1+x}{1-x}right)^n}
                          &=[x^j](1-x)^{-n}(1+x)^n\
                          &=[x^j]sum_{k=0}^inftybinom{-n}{k}(-x)^k(1+x)^ntag{1}\
                          &=[x^j]sum_{k=0}^inftybinom{n+k-1}{k}x^k(1+x)^ntag{2}\
                          &=sum_{k=0}^jbinom{n+k-1}{k}[x^{j-k}](1+x)^ntag{3}\
                          &,,color{blue}{=sum_{k=0}^jbinom{n+k-1}{k}binom{n}{j-k}}tag{4}
                          end{align*}




                          Comment:




                          • In (1) we apply the binomial series expansion


                          • In (2) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$


                          • In (3) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$. We also set the upper limit of the sum to $j$ since other values do not contribute.


                          • In (4) we select the coefficient of $[x^{j-k}](1+x)^n=[x^{j-k}]sum_{t=0}^nbinom{n}{t}x^t$.







                          share|cite|improve this answer









                          $endgroup$



                          Here is a slightly different method to find the coefficients. It is convenient to use the coefficient of operator $[x^j]$ to denote the coefficient of $x^j$ in a series.




                          We obtain
                          begin{align*}
                          color{blue}{[x^j]left(frac{1+x}{1-x}right)^n}
                          &=[x^j](1-x)^{-n}(1+x)^n\
                          &=[x^j]sum_{k=0}^inftybinom{-n}{k}(-x)^k(1+x)^ntag{1}\
                          &=[x^j]sum_{k=0}^inftybinom{n+k-1}{k}x^k(1+x)^ntag{2}\
                          &=sum_{k=0}^jbinom{n+k-1}{k}[x^{j-k}](1+x)^ntag{3}\
                          &,,color{blue}{=sum_{k=0}^jbinom{n+k-1}{k}binom{n}{j-k}}tag{4}
                          end{align*}




                          Comment:




                          • In (1) we apply the binomial series expansion


                          • In (2) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$


                          • In (3) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$. We also set the upper limit of the sum to $j$ since other values do not contribute.


                          • In (4) we select the coefficient of $[x^{j-k}](1+x)^n=[x^{j-k}]sum_{t=0}^nbinom{n}{t}x^t$.








                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Feb 1 at 20:42









                          Markus ScheuerMarkus Scheuer

                          64.1k460152




                          64.1k460152






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095847%2fequating-coefficients-in-algebraic-expansion%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$