For every odd $ninmathbb{N}$, is it true that $sigma(n) < 2n$?












2












$begingroup$


Is the following proposition true?




Let $n in mathbb{N}$ be an odd number, then $sigma(n) < 2n$ .




For $n=p_1^alpha p_2^beta$ it is true :



$$sigma(n)=‎‎left(frac{p_1^{alpha+1}-1}{P_1-1}right)left(‎frac{p_2^{beta+1}-1}{P_2-1}‎right)‎‎ < 2p_1^{alpha} p_2^{beta}
‎Longleftrightarrow‎ $$



$$2‎ < ‎‎frac{p_1^{alpha+1} p_2^{beta+1}+p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}‎‎=‎frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$



$$Longrightarrow‎ 2< frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$ This is true beacuse of $frac{{p_1}{p_2}}{p_1+p_2-1} geq 2$ and $frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)} > 0$



Can somebody help me for $n=p_1^{alpha_1} p_2^{alpha_2}...p_m^{alpha_m}$ ?



Thank you.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Is the following proposition true?




    Let $n in mathbb{N}$ be an odd number, then $sigma(n) < 2n$ .




    For $n=p_1^alpha p_2^beta$ it is true :



    $$sigma(n)=‎‎left(frac{p_1^{alpha+1}-1}{P_1-1}right)left(‎frac{p_2^{beta+1}-1}{P_2-1}‎right)‎‎ < 2p_1^{alpha} p_2^{beta}
    ‎Longleftrightarrow‎ $$



    $$2‎ < ‎‎frac{p_1^{alpha+1} p_2^{beta+1}+p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}‎‎=‎frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$



    $$Longrightarrow‎ 2< frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$ This is true beacuse of $frac{{p_1}{p_2}}{p_1+p_2-1} geq 2$ and $frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)} > 0$



    Can somebody help me for $n=p_1^{alpha_1} p_2^{alpha_2}...p_m^{alpha_m}$ ?



    Thank you.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Is the following proposition true?




      Let $n in mathbb{N}$ be an odd number, then $sigma(n) < 2n$ .




      For $n=p_1^alpha p_2^beta$ it is true :



      $$sigma(n)=‎‎left(frac{p_1^{alpha+1}-1}{P_1-1}right)left(‎frac{p_2^{beta+1}-1}{P_2-1}‎right)‎‎ < 2p_1^{alpha} p_2^{beta}
      ‎Longleftrightarrow‎ $$



      $$2‎ < ‎‎frac{p_1^{alpha+1} p_2^{beta+1}+p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}‎‎=‎frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$



      $$Longrightarrow‎ 2< frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$ This is true beacuse of $frac{{p_1}{p_2}}{p_1+p_2-1} geq 2$ and $frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)} > 0$



      Can somebody help me for $n=p_1^{alpha_1} p_2^{alpha_2}...p_m^{alpha_m}$ ?



      Thank you.










      share|cite|improve this question











      $endgroup$




      Is the following proposition true?




      Let $n in mathbb{N}$ be an odd number, then $sigma(n) < 2n$ .




      For $n=p_1^alpha p_2^beta$ it is true :



      $$sigma(n)=‎‎left(frac{p_1^{alpha+1}-1}{P_1-1}right)left(‎frac{p_2^{beta+1}-1}{P_2-1}‎right)‎‎ < 2p_1^{alpha} p_2^{beta}
      ‎Longleftrightarrow‎ $$



      $$2‎ < ‎‎frac{p_1^{alpha+1} p_2^{beta+1}+p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}‎‎=‎frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$



      $$Longrightarrow‎ 2< frac{{p_1}{p_2}}{p_1+p_2-1}+‎frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)}$$ This is true beacuse of $frac{{p_1}{p_2}}{p_1+p_2-1} geq 2$ and $frac{p_1^{alpha+1}+p_2^{beta+1}-1}{p_1^{alpha} p_2^{beta}(p_1+p_2-1)} > 0$



      Can somebody help me for $n=p_1^{alpha_1} p_2^{alpha_2}...p_m^{alpha_m}$ ?



      Thank you.







      number-theory divisor-sum perfect-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 30 '15 at 21:03









      Zev Chonoles

      111k16233430




      111k16233430










      asked May 30 '15 at 20:48









      MojtabaMojtaba

      421215




      421215






















          4 Answers
          4






          active

          oldest

          votes


















          5












          $begingroup$

          No, that's false. The numbers for which $sigma(n) = 2n$ are called perfect, while $sigma(n) > 2n$ are called abundant.
          It is currently unknown whether there are odd perfect numbers or not, while the smallest odd abundant number is $945$.



          Even more: there are infinitely many odd abundant numbers (cfr. OEIS sequence A005231). This is because every integer multiple (so in particular every odd multiple) of an abundant number is again abundant.






          share|cite|improve this answer











          $endgroup$





















            5












            $begingroup$

            For a counterexample, look at $n=945=3^3cdot 5cdot 7$. It turns out that $sigma(n)=1920gt 1890$. There are infinitely many other counterexamples. One family is obtained by multiplying $945$ by any odd number. There are other families.






            share|cite|improve this answer











            $endgroup$





















              3












              $begingroup$

              An efficient way to produce infinitely many numbers with increasing values of $frac{sigma(n)}{n}$ while staying with odd numbers, let $n$ be the least common multiple of the consecutive odd numbers $1,3,5,7,9,11,ldots.$ Not the product, the LCM. This method should produce ratios that slowly grow. Let me work up a table, give me a few minutes.



                 odd      lcm     sigma  ratio
              1 1 1 1
              3 3 4 1.333333333333333
              5 15 24 1.6
              7 105 192 1.828571428571429
              9 315 624 1.980952380952381
              11 3465 7488 2.161038961038961
              13 45045 104832 2.327272727272727
              15 45045 104832 2.327272727272727
              17 765765 1886976 2.464171122994653
              19 14549535 37739520 2.593864339994371
              21 14549535 37739520 2.593864339994371
              23 334639305 905748480 2.706641050428909


              It is not difficult to prove that the ratio stays the same if the new odd number is divisible by two or more different primes, but the ratio increases if the new odd number is a prime or prime power. In the long run, the exponent for some prime factor $p$ in the LCM is roughly proportional to $frac{1}{log p}.$



              Another sequence, less efficient but easier to describe and to program, just takes the ordinary product of the consecutive prime numbers, beginning with $3.$ It is not even necessary to find the product or its sum of divisors, every time we use a new prime we just multiply the existing ratio by $(p+1)/p.$ This increases without bound, because the sum of prime reciprocals diverges. Note how the first three ratios in this list are the same as the first three in the earlier list.



               May 30, 2015 

              3 1.333333333333333
              5 1.6
              7 1.828571428571429
              11 1.994805194805195
              13 2.148251748251748
              17 2.27461949814891
              19 2.394336313840958
              23 2.498437892703608
              29 2.584590923486491
              31 2.66796482424412
              37 2.740071981656123
              41 2.806903005598956
              43 2.872179819682652
              47 2.93329002861207
              53 2.988635123491544
              59 3.039289956093095
              61 3.089114381602818
              67 3.13522056640286
              71 3.179378602549379
              73 3.222931734091151
              79 3.263728338320153
              83 3.303050366492685
              89 3.340163291958895
              97 3.374597965071873
              101 3.408009826112189
              103 3.441097300152113
              107 3.473257088004002
              109 3.505121831930644
              113 3.536140609204367
              127 3.563984236048496
              131 3.591190222583217
              137 3.617403289901343
              139 3.643427774001352
              149 3.667880309397335
              151 3.692170907472814
              157 3.715687919622322
              163 3.738483551031048
              167 3.760869680079138
              173 3.782608811177862
              179 3.803740703977738
              181 3.824755845988665
              191 3.844780745705883
              193 3.864701889466017
              197 3.884319665554677
              199 3.903838859853947
              211 3.922340465824818
              223 3.939929436523585
              227 3.957285953865098
              229 3.974566678554465
              233 3.991624904642682
              239 4.008326264076334
              241 4.024958323263372
              251 4.040994013794302
              257 4.056717725910233
              263 4.072142508138029
              269 4.08728058437646
              271 4.102362800554971
              277 4.117172774564195
              281 4.131824634971897
              283 4.146424722021268
              293 4.160576342232945





              share|cite|improve this answer











              $endgroup$





















                0












                $begingroup$

                Let $O_n$ be the product of the first $n$ odd integers.



                Notice that $sigma(O_n)geq frac{O_n}{1} + frac{O_n}{3} + dots+ frac{O_n}{n} = O_n(1+1/3 + dots 1/n)$.



                Recall $sumlimits_{i=1}^infty frac{1}{2i-1}$ diverges.






                share|cite|improve this answer









                $endgroup$














                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1305784%2ffor-every-odd-n-in-mathbbn-is-it-true-that-sigman-2n%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  5












                  $begingroup$

                  No, that's false. The numbers for which $sigma(n) = 2n$ are called perfect, while $sigma(n) > 2n$ are called abundant.
                  It is currently unknown whether there are odd perfect numbers or not, while the smallest odd abundant number is $945$.



                  Even more: there are infinitely many odd abundant numbers (cfr. OEIS sequence A005231). This is because every integer multiple (so in particular every odd multiple) of an abundant number is again abundant.






                  share|cite|improve this answer











                  $endgroup$


















                    5












                    $begingroup$

                    No, that's false. The numbers for which $sigma(n) = 2n$ are called perfect, while $sigma(n) > 2n$ are called abundant.
                    It is currently unknown whether there are odd perfect numbers or not, while the smallest odd abundant number is $945$.



                    Even more: there are infinitely many odd abundant numbers (cfr. OEIS sequence A005231). This is because every integer multiple (so in particular every odd multiple) of an abundant number is again abundant.






                    share|cite|improve this answer











                    $endgroup$
















                      5












                      5








                      5





                      $begingroup$

                      No, that's false. The numbers for which $sigma(n) = 2n$ are called perfect, while $sigma(n) > 2n$ are called abundant.
                      It is currently unknown whether there are odd perfect numbers or not, while the smallest odd abundant number is $945$.



                      Even more: there are infinitely many odd abundant numbers (cfr. OEIS sequence A005231). This is because every integer multiple (so in particular every odd multiple) of an abundant number is again abundant.






                      share|cite|improve this answer











                      $endgroup$



                      No, that's false. The numbers for which $sigma(n) = 2n$ are called perfect, while $sigma(n) > 2n$ are called abundant.
                      It is currently unknown whether there are odd perfect numbers or not, while the smallest odd abundant number is $945$.



                      Even more: there are infinitely many odd abundant numbers (cfr. OEIS sequence A005231). This is because every integer multiple (so in particular every odd multiple) of an abundant number is again abundant.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited May 30 '15 at 21:42









                      user84413

                      23k11848




                      23k11848










                      answered May 30 '15 at 20:56









                      A.P.A.P.

                      8,19021840




                      8,19021840























                          5












                          $begingroup$

                          For a counterexample, look at $n=945=3^3cdot 5cdot 7$. It turns out that $sigma(n)=1920gt 1890$. There are infinitely many other counterexamples. One family is obtained by multiplying $945$ by any odd number. There are other families.






                          share|cite|improve this answer











                          $endgroup$


















                            5












                            $begingroup$

                            For a counterexample, look at $n=945=3^3cdot 5cdot 7$. It turns out that $sigma(n)=1920gt 1890$. There are infinitely many other counterexamples. One family is obtained by multiplying $945$ by any odd number. There are other families.






                            share|cite|improve this answer











                            $endgroup$
















                              5












                              5








                              5





                              $begingroup$

                              For a counterexample, look at $n=945=3^3cdot 5cdot 7$. It turns out that $sigma(n)=1920gt 1890$. There are infinitely many other counterexamples. One family is obtained by multiplying $945$ by any odd number. There are other families.






                              share|cite|improve this answer











                              $endgroup$



                              For a counterexample, look at $n=945=3^3cdot 5cdot 7$. It turns out that $sigma(n)=1920gt 1890$. There are infinitely many other counterexamples. One family is obtained by multiplying $945$ by any odd number. There are other families.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited May 30 '15 at 21:02

























                              answered May 30 '15 at 20:53









                              André NicolasAndré Nicolas

                              455k36432820




                              455k36432820























                                  3












                                  $begingroup$

                                  An efficient way to produce infinitely many numbers with increasing values of $frac{sigma(n)}{n}$ while staying with odd numbers, let $n$ be the least common multiple of the consecutive odd numbers $1,3,5,7,9,11,ldots.$ Not the product, the LCM. This method should produce ratios that slowly grow. Let me work up a table, give me a few minutes.



                                     odd      lcm     sigma  ratio
                                  1 1 1 1
                                  3 3 4 1.333333333333333
                                  5 15 24 1.6
                                  7 105 192 1.828571428571429
                                  9 315 624 1.980952380952381
                                  11 3465 7488 2.161038961038961
                                  13 45045 104832 2.327272727272727
                                  15 45045 104832 2.327272727272727
                                  17 765765 1886976 2.464171122994653
                                  19 14549535 37739520 2.593864339994371
                                  21 14549535 37739520 2.593864339994371
                                  23 334639305 905748480 2.706641050428909


                                  It is not difficult to prove that the ratio stays the same if the new odd number is divisible by two or more different primes, but the ratio increases if the new odd number is a prime or prime power. In the long run, the exponent for some prime factor $p$ in the LCM is roughly proportional to $frac{1}{log p}.$



                                  Another sequence, less efficient but easier to describe and to program, just takes the ordinary product of the consecutive prime numbers, beginning with $3.$ It is not even necessary to find the product or its sum of divisors, every time we use a new prime we just multiply the existing ratio by $(p+1)/p.$ This increases without bound, because the sum of prime reciprocals diverges. Note how the first three ratios in this list are the same as the first three in the earlier list.



                                   May 30, 2015 

                                  3 1.333333333333333
                                  5 1.6
                                  7 1.828571428571429
                                  11 1.994805194805195
                                  13 2.148251748251748
                                  17 2.27461949814891
                                  19 2.394336313840958
                                  23 2.498437892703608
                                  29 2.584590923486491
                                  31 2.66796482424412
                                  37 2.740071981656123
                                  41 2.806903005598956
                                  43 2.872179819682652
                                  47 2.93329002861207
                                  53 2.988635123491544
                                  59 3.039289956093095
                                  61 3.089114381602818
                                  67 3.13522056640286
                                  71 3.179378602549379
                                  73 3.222931734091151
                                  79 3.263728338320153
                                  83 3.303050366492685
                                  89 3.340163291958895
                                  97 3.374597965071873
                                  101 3.408009826112189
                                  103 3.441097300152113
                                  107 3.473257088004002
                                  109 3.505121831930644
                                  113 3.536140609204367
                                  127 3.563984236048496
                                  131 3.591190222583217
                                  137 3.617403289901343
                                  139 3.643427774001352
                                  149 3.667880309397335
                                  151 3.692170907472814
                                  157 3.715687919622322
                                  163 3.738483551031048
                                  167 3.760869680079138
                                  173 3.782608811177862
                                  179 3.803740703977738
                                  181 3.824755845988665
                                  191 3.844780745705883
                                  193 3.864701889466017
                                  197 3.884319665554677
                                  199 3.903838859853947
                                  211 3.922340465824818
                                  223 3.939929436523585
                                  227 3.957285953865098
                                  229 3.974566678554465
                                  233 3.991624904642682
                                  239 4.008326264076334
                                  241 4.024958323263372
                                  251 4.040994013794302
                                  257 4.056717725910233
                                  263 4.072142508138029
                                  269 4.08728058437646
                                  271 4.102362800554971
                                  277 4.117172774564195
                                  281 4.131824634971897
                                  283 4.146424722021268
                                  293 4.160576342232945





                                  share|cite|improve this answer











                                  $endgroup$


















                                    3












                                    $begingroup$

                                    An efficient way to produce infinitely many numbers with increasing values of $frac{sigma(n)}{n}$ while staying with odd numbers, let $n$ be the least common multiple of the consecutive odd numbers $1,3,5,7,9,11,ldots.$ Not the product, the LCM. This method should produce ratios that slowly grow. Let me work up a table, give me a few minutes.



                                       odd      lcm     sigma  ratio
                                    1 1 1 1
                                    3 3 4 1.333333333333333
                                    5 15 24 1.6
                                    7 105 192 1.828571428571429
                                    9 315 624 1.980952380952381
                                    11 3465 7488 2.161038961038961
                                    13 45045 104832 2.327272727272727
                                    15 45045 104832 2.327272727272727
                                    17 765765 1886976 2.464171122994653
                                    19 14549535 37739520 2.593864339994371
                                    21 14549535 37739520 2.593864339994371
                                    23 334639305 905748480 2.706641050428909


                                    It is not difficult to prove that the ratio stays the same if the new odd number is divisible by two or more different primes, but the ratio increases if the new odd number is a prime or prime power. In the long run, the exponent for some prime factor $p$ in the LCM is roughly proportional to $frac{1}{log p}.$



                                    Another sequence, less efficient but easier to describe and to program, just takes the ordinary product of the consecutive prime numbers, beginning with $3.$ It is not even necessary to find the product or its sum of divisors, every time we use a new prime we just multiply the existing ratio by $(p+1)/p.$ This increases without bound, because the sum of prime reciprocals diverges. Note how the first three ratios in this list are the same as the first three in the earlier list.



                                     May 30, 2015 

                                    3 1.333333333333333
                                    5 1.6
                                    7 1.828571428571429
                                    11 1.994805194805195
                                    13 2.148251748251748
                                    17 2.27461949814891
                                    19 2.394336313840958
                                    23 2.498437892703608
                                    29 2.584590923486491
                                    31 2.66796482424412
                                    37 2.740071981656123
                                    41 2.806903005598956
                                    43 2.872179819682652
                                    47 2.93329002861207
                                    53 2.988635123491544
                                    59 3.039289956093095
                                    61 3.089114381602818
                                    67 3.13522056640286
                                    71 3.179378602549379
                                    73 3.222931734091151
                                    79 3.263728338320153
                                    83 3.303050366492685
                                    89 3.340163291958895
                                    97 3.374597965071873
                                    101 3.408009826112189
                                    103 3.441097300152113
                                    107 3.473257088004002
                                    109 3.505121831930644
                                    113 3.536140609204367
                                    127 3.563984236048496
                                    131 3.591190222583217
                                    137 3.617403289901343
                                    139 3.643427774001352
                                    149 3.667880309397335
                                    151 3.692170907472814
                                    157 3.715687919622322
                                    163 3.738483551031048
                                    167 3.760869680079138
                                    173 3.782608811177862
                                    179 3.803740703977738
                                    181 3.824755845988665
                                    191 3.844780745705883
                                    193 3.864701889466017
                                    197 3.884319665554677
                                    199 3.903838859853947
                                    211 3.922340465824818
                                    223 3.939929436523585
                                    227 3.957285953865098
                                    229 3.974566678554465
                                    233 3.991624904642682
                                    239 4.008326264076334
                                    241 4.024958323263372
                                    251 4.040994013794302
                                    257 4.056717725910233
                                    263 4.072142508138029
                                    269 4.08728058437646
                                    271 4.102362800554971
                                    277 4.117172774564195
                                    281 4.131824634971897
                                    283 4.146424722021268
                                    293 4.160576342232945





                                    share|cite|improve this answer











                                    $endgroup$
















                                      3












                                      3








                                      3





                                      $begingroup$

                                      An efficient way to produce infinitely many numbers with increasing values of $frac{sigma(n)}{n}$ while staying with odd numbers, let $n$ be the least common multiple of the consecutive odd numbers $1,3,5,7,9,11,ldots.$ Not the product, the LCM. This method should produce ratios that slowly grow. Let me work up a table, give me a few minutes.



                                         odd      lcm     sigma  ratio
                                      1 1 1 1
                                      3 3 4 1.333333333333333
                                      5 15 24 1.6
                                      7 105 192 1.828571428571429
                                      9 315 624 1.980952380952381
                                      11 3465 7488 2.161038961038961
                                      13 45045 104832 2.327272727272727
                                      15 45045 104832 2.327272727272727
                                      17 765765 1886976 2.464171122994653
                                      19 14549535 37739520 2.593864339994371
                                      21 14549535 37739520 2.593864339994371
                                      23 334639305 905748480 2.706641050428909


                                      It is not difficult to prove that the ratio stays the same if the new odd number is divisible by two or more different primes, but the ratio increases if the new odd number is a prime or prime power. In the long run, the exponent for some prime factor $p$ in the LCM is roughly proportional to $frac{1}{log p}.$



                                      Another sequence, less efficient but easier to describe and to program, just takes the ordinary product of the consecutive prime numbers, beginning with $3.$ It is not even necessary to find the product or its sum of divisors, every time we use a new prime we just multiply the existing ratio by $(p+1)/p.$ This increases without bound, because the sum of prime reciprocals diverges. Note how the first three ratios in this list are the same as the first three in the earlier list.



                                       May 30, 2015 

                                      3 1.333333333333333
                                      5 1.6
                                      7 1.828571428571429
                                      11 1.994805194805195
                                      13 2.148251748251748
                                      17 2.27461949814891
                                      19 2.394336313840958
                                      23 2.498437892703608
                                      29 2.584590923486491
                                      31 2.66796482424412
                                      37 2.740071981656123
                                      41 2.806903005598956
                                      43 2.872179819682652
                                      47 2.93329002861207
                                      53 2.988635123491544
                                      59 3.039289956093095
                                      61 3.089114381602818
                                      67 3.13522056640286
                                      71 3.179378602549379
                                      73 3.222931734091151
                                      79 3.263728338320153
                                      83 3.303050366492685
                                      89 3.340163291958895
                                      97 3.374597965071873
                                      101 3.408009826112189
                                      103 3.441097300152113
                                      107 3.473257088004002
                                      109 3.505121831930644
                                      113 3.536140609204367
                                      127 3.563984236048496
                                      131 3.591190222583217
                                      137 3.617403289901343
                                      139 3.643427774001352
                                      149 3.667880309397335
                                      151 3.692170907472814
                                      157 3.715687919622322
                                      163 3.738483551031048
                                      167 3.760869680079138
                                      173 3.782608811177862
                                      179 3.803740703977738
                                      181 3.824755845988665
                                      191 3.844780745705883
                                      193 3.864701889466017
                                      197 3.884319665554677
                                      199 3.903838859853947
                                      211 3.922340465824818
                                      223 3.939929436523585
                                      227 3.957285953865098
                                      229 3.974566678554465
                                      233 3.991624904642682
                                      239 4.008326264076334
                                      241 4.024958323263372
                                      251 4.040994013794302
                                      257 4.056717725910233
                                      263 4.072142508138029
                                      269 4.08728058437646
                                      271 4.102362800554971
                                      277 4.117172774564195
                                      281 4.131824634971897
                                      283 4.146424722021268
                                      293 4.160576342232945





                                      share|cite|improve this answer











                                      $endgroup$



                                      An efficient way to produce infinitely many numbers with increasing values of $frac{sigma(n)}{n}$ while staying with odd numbers, let $n$ be the least common multiple of the consecutive odd numbers $1,3,5,7,9,11,ldots.$ Not the product, the LCM. This method should produce ratios that slowly grow. Let me work up a table, give me a few minutes.



                                         odd      lcm     sigma  ratio
                                      1 1 1 1
                                      3 3 4 1.333333333333333
                                      5 15 24 1.6
                                      7 105 192 1.828571428571429
                                      9 315 624 1.980952380952381
                                      11 3465 7488 2.161038961038961
                                      13 45045 104832 2.327272727272727
                                      15 45045 104832 2.327272727272727
                                      17 765765 1886976 2.464171122994653
                                      19 14549535 37739520 2.593864339994371
                                      21 14549535 37739520 2.593864339994371
                                      23 334639305 905748480 2.706641050428909


                                      It is not difficult to prove that the ratio stays the same if the new odd number is divisible by two or more different primes, but the ratio increases if the new odd number is a prime or prime power. In the long run, the exponent for some prime factor $p$ in the LCM is roughly proportional to $frac{1}{log p}.$



                                      Another sequence, less efficient but easier to describe and to program, just takes the ordinary product of the consecutive prime numbers, beginning with $3.$ It is not even necessary to find the product or its sum of divisors, every time we use a new prime we just multiply the existing ratio by $(p+1)/p.$ This increases without bound, because the sum of prime reciprocals diverges. Note how the first three ratios in this list are the same as the first three in the earlier list.



                                       May 30, 2015 

                                      3 1.333333333333333
                                      5 1.6
                                      7 1.828571428571429
                                      11 1.994805194805195
                                      13 2.148251748251748
                                      17 2.27461949814891
                                      19 2.394336313840958
                                      23 2.498437892703608
                                      29 2.584590923486491
                                      31 2.66796482424412
                                      37 2.740071981656123
                                      41 2.806903005598956
                                      43 2.872179819682652
                                      47 2.93329002861207
                                      53 2.988635123491544
                                      59 3.039289956093095
                                      61 3.089114381602818
                                      67 3.13522056640286
                                      71 3.179378602549379
                                      73 3.222931734091151
                                      79 3.263728338320153
                                      83 3.303050366492685
                                      89 3.340163291958895
                                      97 3.374597965071873
                                      101 3.408009826112189
                                      103 3.441097300152113
                                      107 3.473257088004002
                                      109 3.505121831930644
                                      113 3.536140609204367
                                      127 3.563984236048496
                                      131 3.591190222583217
                                      137 3.617403289901343
                                      139 3.643427774001352
                                      149 3.667880309397335
                                      151 3.692170907472814
                                      157 3.715687919622322
                                      163 3.738483551031048
                                      167 3.760869680079138
                                      173 3.782608811177862
                                      179 3.803740703977738
                                      181 3.824755845988665
                                      191 3.844780745705883
                                      193 3.864701889466017
                                      197 3.884319665554677
                                      199 3.903838859853947
                                      211 3.922340465824818
                                      223 3.939929436523585
                                      227 3.957285953865098
                                      229 3.974566678554465
                                      233 3.991624904642682
                                      239 4.008326264076334
                                      241 4.024958323263372
                                      251 4.040994013794302
                                      257 4.056717725910233
                                      263 4.072142508138029
                                      269 4.08728058437646
                                      271 4.102362800554971
                                      277 4.117172774564195
                                      281 4.131824634971897
                                      283 4.146424722021268
                                      293 4.160576342232945






                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited May 30 '15 at 22:43

























                                      answered May 30 '15 at 21:11









                                      Will JagyWill Jagy

                                      104k5103202




                                      104k5103202























                                          0












                                          $begingroup$

                                          Let $O_n$ be the product of the first $n$ odd integers.



                                          Notice that $sigma(O_n)geq frac{O_n}{1} + frac{O_n}{3} + dots+ frac{O_n}{n} = O_n(1+1/3 + dots 1/n)$.



                                          Recall $sumlimits_{i=1}^infty frac{1}{2i-1}$ diverges.






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Let $O_n$ be the product of the first $n$ odd integers.



                                            Notice that $sigma(O_n)geq frac{O_n}{1} + frac{O_n}{3} + dots+ frac{O_n}{n} = O_n(1+1/3 + dots 1/n)$.



                                            Recall $sumlimits_{i=1}^infty frac{1}{2i-1}$ diverges.






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Let $O_n$ be the product of the first $n$ odd integers.



                                              Notice that $sigma(O_n)geq frac{O_n}{1} + frac{O_n}{3} + dots+ frac{O_n}{n} = O_n(1+1/3 + dots 1/n)$.



                                              Recall $sumlimits_{i=1}^infty frac{1}{2i-1}$ diverges.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Let $O_n$ be the product of the first $n$ odd integers.



                                              Notice that $sigma(O_n)geq frac{O_n}{1} + frac{O_n}{3} + dots+ frac{O_n}{n} = O_n(1+1/3 + dots 1/n)$.



                                              Recall $sumlimits_{i=1}^infty frac{1}{2i-1}$ diverges.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Feb 1 at 2:29









                                              Jorge Fernández HidalgoJorge Fernández Hidalgo

                                              77.1k1394195




                                              77.1k1394195






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1305784%2ffor-every-odd-n-in-mathbbn-is-it-true-that-sigman-2n%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                                                  Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                                                  A Topological Invariant for $pi_3(U(n))$