How to prove that a parametrized linear differential equation solution induces a lipschitz function with...
$begingroup$
Let's consider the following linear differential equation:
$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.
$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$
Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:
For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.
Let be $R > 0$.
Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.
I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.
What I have already done:
- For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.
- For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.
What I have tried:
- Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.
- Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…
real-analysis ordinary-differential-equations inequality
$endgroup$
add a comment |
$begingroup$
Let's consider the following linear differential equation:
$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.
$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$
Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:
For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.
Let be $R > 0$.
Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.
I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.
What I have already done:
- For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.
- For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.
What I have tried:
- Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.
- Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…
real-analysis ordinary-differential-equations inequality
$endgroup$
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57
add a comment |
$begingroup$
Let's consider the following linear differential equation:
$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.
$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$
Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:
For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.
Let be $R > 0$.
Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.
I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.
What I have already done:
- For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.
- For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.
What I have tried:
- Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.
- Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…
real-analysis ordinary-differential-equations inequality
$endgroup$
Let's consider the following linear differential equation:
$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.
$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$
Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:
For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.
Let be $R > 0$.
Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.
I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.
What I have already done:
- For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.
- For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.
What I have tried:
- Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.
- Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…
real-analysis ordinary-differential-equations inequality
real-analysis ordinary-differential-equations inequality
asked Apr 21 '18 at 13:52
RaitoRaito
686415
686415
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57
add a comment |
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.
Let's fix $(lambda, t, mu) in [-R, R]^3$.
We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$
$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$
By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$
By Gronwall's lemma:
$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2747335%2fhow-to-prove-that-a-parametrized-linear-differential-equation-solution-induces-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.
Let's fix $(lambda, t, mu) in [-R, R]^3$.
We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$
$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$
By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$
By Gronwall's lemma:
$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$
$endgroup$
add a comment |
$begingroup$
Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.
Let's fix $(lambda, t, mu) in [-R, R]^3$.
We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$
$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$
By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$
By Gronwall's lemma:
$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$
$endgroup$
add a comment |
$begingroup$
Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.
Let's fix $(lambda, t, mu) in [-R, R]^3$.
We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$
$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$
By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$
By Gronwall's lemma:
$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$
$endgroup$
Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.
Let's fix $(lambda, t, mu) in [-R, R]^3$.
We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$
$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$
By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$
By Gronwall's lemma:
$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$
edited Jan 31 at 21:45


Martin Sleziak
45k10122277
45k10122277
answered Apr 22 '18 at 7:37
RaitoRaito
686415
686415
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2747335%2fhow-to-prove-that-a-parametrized-linear-differential-equation-solution-induces-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06
$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55
$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57