How to prove that a parametrized linear differential equation solution induces a lipschitz function with...












0












$begingroup$


Let's consider the following linear differential equation:



$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.



$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$



Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:



For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.



Let be $R > 0$.



Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.



I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.



What I have already done:




  • For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.

  • For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.


What I have tried:




  • Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.

  • Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…










share|cite|improve this question









$endgroup$












  • $begingroup$
    A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
    $endgroup$
    – user539887
    Apr 21 '18 at 17:06










  • $begingroup$
    @user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
    $endgroup$
    – Raito
    Apr 21 '18 at 17:55












  • $begingroup$
    Yes, please do it
    $endgroup$
    – user539887
    Apr 21 '18 at 19:57
















0












$begingroup$


Let's consider the following linear differential equation:



$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.



$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$



Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:



For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.



Let be $R > 0$.



Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.



I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.



What I have already done:




  • For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.

  • For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.


What I have tried:




  • Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.

  • Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…










share|cite|improve this question









$endgroup$












  • $begingroup$
    A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
    $endgroup$
    – user539887
    Apr 21 '18 at 17:06










  • $begingroup$
    @user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
    $endgroup$
    – Raito
    Apr 21 '18 at 17:55












  • $begingroup$
    Yes, please do it
    $endgroup$
    – user539887
    Apr 21 '18 at 19:57














0












0








0





$begingroup$


Let's consider the following linear differential equation:



$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.



$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$



Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:



For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.



Let be $R > 0$.



Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.



I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.



What I have already done:




  • For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.

  • For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.


What I have tried:




  • Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.

  • Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…










share|cite|improve this question









$endgroup$




Let's consider the following linear differential equation:



$X'_{lambda}(t) = A_{lambda}(t) X_{lambda}(t)$ where: $X_{lambda}(t) = begin{pmatrix} x_{lambda}(t) \ x'_{lambda}(t) end{pmatrix}$ and $A_{lambda}(t) = begin{bmatrix} 0 & 1 \ p(t) - lambda & 0 end{bmatrix}$ where $p$ is a continuous real function and $lambda in mathbb{R}$ and $X_{lambda}(0) = begin{pmatrix} 0 \ 1 end{pmatrix}$.



$newcommand{norm}[1]{lVert #1 rVert}$
$newcommand{abs}[1]{lvert #1 rvert}$



Let us assume $norm{cdot}$ is the usual norm over vectors and for matrices:



For all matrix $A$ of size $n times p$ : $norm{A} = maxlimits_{i in [[1, n]]} sumlimits_{j=1}^p abs{a_{ij}}$.



Let be $R > 0$.



Also, let us define $c = sup { norm{A_{lambda}(t)} mid (t, lambda) in [-R, R]^2 }$.



I am trying to show that: $norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{2cR} abs{lambda - mu}$ for all $(lambda, mu, t) in [-R, R]^3$.



What I have already done:




  • For all $t in [-R, R], norm{X_lambda}(t) leq e^{cabs{t}}$.

  • For all $(s, t, lambda) in [-R, R]^3, norm{X_{lambda}(t) - X_{lambda}(s)} leq ce^{cR} abs{t - s} (*)$.


What I have tried:




  • Creating a new differential equation which is verified by $X_{lambda}$ and $X_{mu}$, but I could not find one.

  • Using $(*)$ and $X_{lambda}(0) = X_{mu}(0)$, but I cannot get $abs{lambda - mu}$ this way in my inequality…







real-analysis ordinary-differential-equations inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 21 '18 at 13:52









RaitoRaito

686415




686415












  • $begingroup$
    A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
    $endgroup$
    – user539887
    Apr 21 '18 at 17:06










  • $begingroup$
    @user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
    $endgroup$
    – Raito
    Apr 21 '18 at 17:55












  • $begingroup$
    Yes, please do it
    $endgroup$
    – user539887
    Apr 21 '18 at 19:57


















  • $begingroup$
    A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
    $endgroup$
    – user539887
    Apr 21 '18 at 17:06










  • $begingroup$
    @user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
    $endgroup$
    – Raito
    Apr 21 '18 at 17:55












  • $begingroup$
    Yes, please do it
    $endgroup$
    – user539887
    Apr 21 '18 at 19:57
















$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06




$begingroup$
A hint: try finding an integral inequality satisfied by $lVert X_lambda(t)-X_mu(t)rVert$ and applying Grönwall's inequality.
$endgroup$
– user539887
Apr 21 '18 at 17:06












$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55






$begingroup$
@user539887 Thank you, it did the job. Do you want me to post the details as the answer, or would you do it?
$endgroup$
– Raito
Apr 21 '18 at 17:55














$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57




$begingroup$
Yes, please do it
$endgroup$
– user539887
Apr 21 '18 at 19:57










1 Answer
1






active

oldest

votes


















1












$begingroup$

Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.



Let's fix $(lambda, t, mu) in [-R, R]^3$.



We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$



$begin{align*}
X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
& = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
& = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
end{align*}$



By taking norms:
$begin{align*}
norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
end{align*}$



By Gronwall's lemma:



$begin{equation*}
norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
end{equation*}$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2747335%2fhow-to-prove-that-a-parametrized-linear-differential-equation-solution-induces-a%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.



    Let's fix $(lambda, t, mu) in [-R, R]^3$.



    We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$



    $begin{align*}
    X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
    & = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
    & = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
    & = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
    end{align*}$



    By taking norms:
    $begin{align*}
    norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
    end{align*}$



    By Gronwall's lemma:



    $begin{equation*}
    norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
    end{equation*}$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.



      Let's fix $(lambda, t, mu) in [-R, R]^3$.



      We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$



      $begin{align*}
      X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
      & = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
      & = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
      & = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
      end{align*}$



      By taking norms:
      $begin{align*}
      norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
      end{align*}$



      By Gronwall's lemma:



      $begin{equation*}
      norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
      end{equation*}$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.



        Let's fix $(lambda, t, mu) in [-R, R]^3$.



        We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$



        $begin{align*}
        X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
        & = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
        & = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
        & = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
        end{align*}$



        By taking norms:
        $begin{align*}
        norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
        end{align*}$



        By Gronwall's lemma:



        $begin{equation*}
        norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
        end{equation*}$






        share|cite|improve this answer











        $endgroup$



        Let us denote $M = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}$.



        Let's fix $(lambda, t, mu) in [-R, R]^3$.



        We have, by the fundamental theorem of analysis, because $X_{lambda}$ and $X_{mu}$ are twice continuously differentiable.$newcommand{norm}[1]{lVert #1 rVert}newcommand{abs}[1]{lvert #1 rvert}$



        $begin{align*}
        X_{lambda}(t) - X_{mu}(t) & = X_{lambda}(t) - X_{lambda}(0) - (X_{mu}(t) - X_{mu}(0)) \
        & = int_0^t X'_{lambda}(s) - X'_{mu}(s) textrm{d}s \
        & = int_0^t A_{lambda}(s) X_{lambda}(s) - A_{mu}(s) X_{mu}(s) textrm{d}s \
        & = int_0^t A_{lambda}(s)(X_{lambda}(s) - X_{mu}(s)) textrm{d}s + (lambda - mu)Mint_0^t X_{mu}(s) textrm{d}s
        end{align*}$



        By taking norms:
        $begin{align*}
        norm{X_{lambda}(t) - X_{mu}(t)} leq c int_0^t norm{X_{lambda}(s) - X_{mu}(s)} textrm{d}s + abs{lambda - mu}R e^{cR}
        end{align*}$



        By Gronwall's lemma:



        $begin{equation*}
        norm{X_{lambda}(t) - X_{mu}(t)} leq Re^{cR}e^{cR} abs{lambda - mu} = Re^{2cR} abs{lambda - mu}
        end{equation*}$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 31 at 21:45









        Martin Sleziak

        45k10122277




        45k10122277










        answered Apr 22 '18 at 7:37









        RaitoRaito

        686415




        686415






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2747335%2fhow-to-prove-that-a-parametrized-linear-differential-equation-solution-induces-a%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith