Prove that for $a_k>0,$ if $sum a_k^2$ converges, then $sum frac{a_k}k$ converges. [duplicate]
$begingroup$
This question already has an answer here:
Converging series question, Prove that if $sum_{n=1}^{infty} a_n^{2}$ converges, then does $sum_{n=1}^{infty} frac {a_n}{n}$
3 answers
Prove that for for $a_k>0,$ if $sum a_k^2$ converges, then $sum frac{a_k}k$ converges.
I was given this in an introductory calculus class, where I was only taught the basic convergence tests. I’ve tried limit comparison, power series, direct comparison, all to no avail. I have tried proving the contrapositive, using integrals as well, but the limit comparison with any series I’ve tried just goes to 0 or infinity which is inconclusive. My searches on MSE just yield the simpler problem of “if$sum a_k$ converges then prove $sum a_k^2$ converges“, and searches on google turned up nothing. Thank you for any help.
sequences-and-series
$endgroup$
marked as duplicate by Robert Wolfe, Mark Viola
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 22:37
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Converging series question, Prove that if $sum_{n=1}^{infty} a_n^{2}$ converges, then does $sum_{n=1}^{infty} frac {a_n}{n}$
3 answers
Prove that for for $a_k>0,$ if $sum a_k^2$ converges, then $sum frac{a_k}k$ converges.
I was given this in an introductory calculus class, where I was only taught the basic convergence tests. I’ve tried limit comparison, power series, direct comparison, all to no avail. I have tried proving the contrapositive, using integrals as well, but the limit comparison with any series I’ve tried just goes to 0 or infinity which is inconclusive. My searches on MSE just yield the simpler problem of “if$sum a_k$ converges then prove $sum a_k^2$ converges“, and searches on google turned up nothing. Thank you for any help.
sequences-and-series
$endgroup$
marked as duplicate by Robert Wolfe, Mark Viola
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 22:37
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
1
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32
add a comment |
$begingroup$
This question already has an answer here:
Converging series question, Prove that if $sum_{n=1}^{infty} a_n^{2}$ converges, then does $sum_{n=1}^{infty} frac {a_n}{n}$
3 answers
Prove that for for $a_k>0,$ if $sum a_k^2$ converges, then $sum frac{a_k}k$ converges.
I was given this in an introductory calculus class, where I was only taught the basic convergence tests. I’ve tried limit comparison, power series, direct comparison, all to no avail. I have tried proving the contrapositive, using integrals as well, but the limit comparison with any series I’ve tried just goes to 0 or infinity which is inconclusive. My searches on MSE just yield the simpler problem of “if$sum a_k$ converges then prove $sum a_k^2$ converges“, and searches on google turned up nothing. Thank you for any help.
sequences-and-series
$endgroup$
This question already has an answer here:
Converging series question, Prove that if $sum_{n=1}^{infty} a_n^{2}$ converges, then does $sum_{n=1}^{infty} frac {a_n}{n}$
3 answers
Prove that for for $a_k>0,$ if $sum a_k^2$ converges, then $sum frac{a_k}k$ converges.
I was given this in an introductory calculus class, where I was only taught the basic convergence tests. I’ve tried limit comparison, power series, direct comparison, all to no avail. I have tried proving the contrapositive, using integrals as well, but the limit comparison with any series I’ve tried just goes to 0 or infinity which is inconclusive. My searches on MSE just yield the simpler problem of “if$sum a_k$ converges then prove $sum a_k^2$ converges“, and searches on google turned up nothing. Thank you for any help.
This question already has an answer here:
Converging series question, Prove that if $sum_{n=1}^{infty} a_n^{2}$ converges, then does $sum_{n=1}^{infty} frac {a_n}{n}$
3 answers
sequences-and-series
sequences-and-series
edited Jan 31 at 22:42
Bernard
124k741117
124k741117
asked Jan 31 at 22:25


D.R.D.R.
1,781823
1,781823
marked as duplicate by Robert Wolfe, Mark Viola
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 22:37
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Robert Wolfe, Mark Viola
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 22:37
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
1
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32
add a comment |
1
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
1
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32
1
1
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
1
1
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$a^2+b^2-2ab=(a-b)^2ge0$ hence, $able frac{a^2+b^2}{2}$. Hence, for any $n$ you have that $0le frac{a_n}{n}lefrac{a_n^2+frac{1}{n^2}}{2}$, so
$$0le sum_{n=1}^infty frac{a_n}{n}lefrac{1}{2}left(sum_{n=1}^infty a_n^2+sum_{n=1}^infty frac{1}{n^2}right).$$
So, if $sum a_n^2$ converges, so it does $sumfrac{a_n}{n}$.
$endgroup$
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$a^2+b^2-2ab=(a-b)^2ge0$ hence, $able frac{a^2+b^2}{2}$. Hence, for any $n$ you have that $0le frac{a_n}{n}lefrac{a_n^2+frac{1}{n^2}}{2}$, so
$$0le sum_{n=1}^infty frac{a_n}{n}lefrac{1}{2}left(sum_{n=1}^infty a_n^2+sum_{n=1}^infty frac{1}{n^2}right).$$
So, if $sum a_n^2$ converges, so it does $sumfrac{a_n}{n}$.
$endgroup$
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
add a comment |
$begingroup$
$a^2+b^2-2ab=(a-b)^2ge0$ hence, $able frac{a^2+b^2}{2}$. Hence, for any $n$ you have that $0le frac{a_n}{n}lefrac{a_n^2+frac{1}{n^2}}{2}$, so
$$0le sum_{n=1}^infty frac{a_n}{n}lefrac{1}{2}left(sum_{n=1}^infty a_n^2+sum_{n=1}^infty frac{1}{n^2}right).$$
So, if $sum a_n^2$ converges, so it does $sumfrac{a_n}{n}$.
$endgroup$
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
add a comment |
$begingroup$
$a^2+b^2-2ab=(a-b)^2ge0$ hence, $able frac{a^2+b^2}{2}$. Hence, for any $n$ you have that $0le frac{a_n}{n}lefrac{a_n^2+frac{1}{n^2}}{2}$, so
$$0le sum_{n=1}^infty frac{a_n}{n}lefrac{1}{2}left(sum_{n=1}^infty a_n^2+sum_{n=1}^infty frac{1}{n^2}right).$$
So, if $sum a_n^2$ converges, so it does $sumfrac{a_n}{n}$.
$endgroup$
$a^2+b^2-2ab=(a-b)^2ge0$ hence, $able frac{a^2+b^2}{2}$. Hence, for any $n$ you have that $0le frac{a_n}{n}lefrac{a_n^2+frac{1}{n^2}}{2}$, so
$$0le sum_{n=1}^infty frac{a_n}{n}lefrac{1}{2}left(sum_{n=1}^infty a_n^2+sum_{n=1}^infty frac{1}{n^2}right).$$
So, if $sum a_n^2$ converges, so it does $sumfrac{a_n}{n}$.
answered Jan 31 at 22:33
Tito EliatronTito Eliatron
1,609622
1,609622
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
add a comment |
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
1
1
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
$begingroup$
Since $sum n^{-2}=pi^2/6$ converges.
$endgroup$
– Antinous
Jan 31 at 22:39
add a comment |
1
$begingroup$
I suppose you are not allowed to use Cauchy-Schwartz inequality en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality ?
$endgroup$
– Tito Eliatron
Jan 31 at 22:28
1
$begingroup$
No need here for the full Cauchy-Schwarz, just note that $frac{a_k}{k} leq a_k^2+k^{-2}$.
$endgroup$
– Mindlack
Jan 31 at 22:32