Very basic cumulative Distribution function problem.
$begingroup$
Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
for t<0 we have P(Y $le$ t)=0
for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$
for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1
But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.
probability probability-theory
$endgroup$
add a comment |
$begingroup$
Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
for t<0 we have P(Y $le$ t)=0
for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$
for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1
But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.
probability probability-theory
$endgroup$
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41
add a comment |
$begingroup$
Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
for t<0 we have P(Y $le$ t)=0
for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$
for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1
But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.
probability probability-theory
$endgroup$
Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
for t<0 we have P(Y $le$ t)=0
for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$
for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1
But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.
probability probability-theory
probability probability-theory
asked Jan 31 at 22:11
LucianLucian
396
396
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41
add a comment |
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
No.
$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$
$endgroup$
add a comment |
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095549%2fvery-basic-cumulative-distribution-function-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
No.
$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$
$endgroup$
add a comment |
$begingroup$
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
No.
$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$
$endgroup$
add a comment |
$begingroup$
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
No.
$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$
$endgroup$
P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)
No.
$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$
answered Jan 31 at 22:49


Graham KempGraham Kemp
87.8k43578
87.8k43578
add a comment |
add a comment |
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
add a comment |
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
add a comment |
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
answered Jan 31 at 22:42
herb steinbergherb steinberg
3,1432311
3,1432311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095549%2fvery-basic-cumulative-distribution-function-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41