Very basic cumulative Distribution function problem.












0












$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
    $endgroup$
    – herb steinberg
    Jan 31 at 22:41
















0












$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
    $endgroup$
    – herb steinberg
    Jan 31 at 22:41














0












0








0





$begingroup$


Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.










share|cite|improve this question









$endgroup$




Let X ~ U[0,5]. Find cumulative distribution function of Y=min(2,x)



P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)



for t<0 we have P(Y $le$ t)=0



for t $in$ [0,2) we have P(Y ≤ t)= 1-P(2>x and x>t) = 1-P(x>t)=P(x$le$t)=$frac{1}{5}$$int_0^t ! 1 , mathrm{d}x.$=$frac{t}{5}$



for t$in$[2,+${displaystyle infty}$) we have P(Y ≤ t)=1



But when we will calculate a probability density function we get :
for $t in [0,2)$ we have $frac{1}{5}$ and for $t notin [0,2)$ we have 0. So it seems that $$int_{-infty}^{infty} ! ϱ_y , mathrm{d}x.=frac{2}{5}$$.
Where is mistake in my justification ?.







probability probability-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 22:11









LucianLucian

396




396












  • $begingroup$
    The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
    $endgroup$
    – herb steinberg
    Jan 31 at 22:41


















  • $begingroup$
    The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
    $endgroup$
    – herb steinberg
    Jan 31 at 22:41
















$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41




$begingroup$
The probability density has a delta function of value $frac{3}{5}$ at $t=2$.
$endgroup$
– herb steinberg
Jan 31 at 22:41










2 Answers
2






active

oldest

votes


















1












$begingroup$


P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)




No.



$$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    The probability density has a delta function of value $frac{3}{5}$ at $t=2$.






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095549%2fvery-basic-cumulative-distribution-function-problem%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$


      P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)




      No.



      $$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$


        P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)




        No.



        $$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$


          P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)




          No.



          $$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$






          share|cite|improve this answer









          $endgroup$




          P(Y $le$ t) = P (min(2,x) $le$ t) = 1 - P (min(2,x)>t) = 1-P(2>x and x>t)




          No.



          $$begin{align}mathsf P(Yleq t) &= mathsf P(Xleq tcap 2leq t) qquad startext{ note: }2leq ttext{, not }x\[1ex] &= mathsf P(Xleq t)cdotmathbf 1_{2leq t}\[1ex]&=begin{cases}0 &:& t<2\2/5 &:& t=2 &startext{ note: this is a point with a probability mass.}\t/5 &:& 2< t < 5\ 1 & :& 5leq tend{cases}end{align}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 31 at 22:49









          Graham KempGraham Kemp

          87.8k43578




          87.8k43578























              0












              $begingroup$

              The probability density has a delta function of value $frac{3}{5}$ at $t=2$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                The probability density has a delta function of value $frac{3}{5}$ at $t=2$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  The probability density has a delta function of value $frac{3}{5}$ at $t=2$.






                  share|cite|improve this answer









                  $endgroup$



                  The probability density has a delta function of value $frac{3}{5}$ at $t=2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 31 at 22:42









                  herb steinbergherb steinberg

                  3,1432311




                  3,1432311






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095549%2fvery-basic-cumulative-distribution-function-problem%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith