Can the series expansion of a convergent integral be divergent?












0












$begingroup$


enter image description here



This is the screenshot from Arfken and Weber.



The series expansion for the given integral diverges for all x.



If I check on a calculator, it gives $I(5,1)=0.001148$. It means the integral converges for $x=5$ and $p=1$. Similarly, the integral converges for other finite values of $x$ and $p$. But the series expansion says that the integral diverges.



The author has only used Integration by Parts. How can it make a convergent integral divergent? It doesn't seem there is any mistake in this method.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    enter image description here



    This is the screenshot from Arfken and Weber.



    The series expansion for the given integral diverges for all x.



    If I check on a calculator, it gives $I(5,1)=0.001148$. It means the integral converges for $x=5$ and $p=1$. Similarly, the integral converges for other finite values of $x$ and $p$. But the series expansion says that the integral diverges.



    The author has only used Integration by Parts. How can it make a convergent integral divergent? It doesn't seem there is any mistake in this method.










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      enter image description here



      This is the screenshot from Arfken and Weber.



      The series expansion for the given integral diverges for all x.



      If I check on a calculator, it gives $I(5,1)=0.001148$. It means the integral converges for $x=5$ and $p=1$. Similarly, the integral converges for other finite values of $x$ and $p$. But the series expansion says that the integral diverges.



      The author has only used Integration by Parts. How can it make a convergent integral divergent? It doesn't seem there is any mistake in this method.










      share|cite|improve this question









      $endgroup$




      enter image description here



      This is the screenshot from Arfken and Weber.



      The series expansion for the given integral diverges for all x.



      If I check on a calculator, it gives $I(5,1)=0.001148$. It means the integral converges for $x=5$ and $p=1$. Similarly, the integral converges for other finite values of $x$ and $p$. But the series expansion says that the integral diverges.



      The author has only used Integration by Parts. How can it make a convergent integral divergent? It doesn't seem there is any mistake in this method.







      convergence gamma-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 11:31









      Asit SrivastavaAsit Srivastava

      257




      257






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064902%2fcan-the-series-expansion-of-a-convergent-integral-be-divergent%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064902%2fcan-the-series-expansion-of-a-convergent-integral-be-divergent%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith