Find the inverse of the following matrix: $A$
$begingroup$
Find the inverseof the following matrix:
$$A= begin{bmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&1 \
0 & 0 & 1 & 0 &0 \0&0&0&1&0
end{bmatrix}$$
My attempt : I think the inverse will not exist because $det A=0 $
Is it True ?
Any hints/solution will be appreciated.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Find the inverseof the following matrix:
$$A= begin{bmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&1 \
0 & 0 & 1 & 0 &0 \0&0&0&1&0
end{bmatrix}$$
My attempt : I think the inverse will not exist because $det A=0 $
Is it True ?
Any hints/solution will be appreciated.
linear-algebra
$endgroup$
1
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17
add a comment |
$begingroup$
Find the inverseof the following matrix:
$$A= begin{bmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&1 \
0 & 0 & 1 & 0 &0 \0&0&0&1&0
end{bmatrix}$$
My attempt : I think the inverse will not exist because $det A=0 $
Is it True ?
Any hints/solution will be appreciated.
linear-algebra
$endgroup$
Find the inverseof the following matrix:
$$A= begin{bmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&1 \
0 & 0 & 1 & 0 &0 \0&0&0&1&0
end{bmatrix}$$
My attempt : I think the inverse will not exist because $det A=0 $
Is it True ?
Any hints/solution will be appreciated.
linear-algebra
linear-algebra
edited Jan 7 at 12:16
user376343
3,3933826
3,3933826
asked Jan 7 at 11:33
jasminejasmine
1,701417
1,701417
1
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17
add a comment |
1
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17
1
1
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Interchange rows three times ($R_1-R_2, R_3-R_4,R_4-R_5$):
$$det(A)= begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}=(-1)^3begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}=-1ne 0.$$
Consider the expanded matrix and perform the same row interchanges:
$$begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}begin{vmatrix}
1 & 0 & 0 & 0 &0 \
0 & 1 & 0 & 0 &0 \
0 & 0 & 1 & 0&0 \
0 & 0 & 0 & 1 &0 \0&0&0&0&0
end{vmatrix} Rightarrow begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix} $$
Hence, the inverse matrix is:
$$A^{-1}=begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix}$$
$endgroup$
add a comment |
$begingroup$
Note that the given matrix is a so-called permutation matrix, the inverse of it is the permutation matrix associated to the inverse permutation.
Later edit: The matrix $A$ works on a "generic vector" $x$ with components $x_1,dots, x_5$ as below by mapping it into a vector with components $x_{sigma(1)}, dots,x_{sigma(5)}$ for a particular permutation $sigma$. Explicitly:
$$
A
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}
0 & 1 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1 \
0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 0
end{bmatrix}
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}x_2\x_1\x_5\x_3\x_4end{bmatrix}
$$
The corresponding permutation $sigma$ (with the inverse $tau$) is of course
$$
sigma
=
binom{12345}{21534}=(12)(354) ,
qquadtext{ with }
tau:=sigma^{-1}=
binom{12345}{21453}=(12)(345) .
$$
Now associate in the natural way the permutation matrix for $tau$...
Note: It is important to see at a glance, that this matrix is a permutation matrix. (Exactly one $1$ entry on each row and/or column.) This is part of a structure. (One has a mapping / a representation of the symmetric group into the general linear group of the corresponding dimension over $Bbb Z$, or $Bbb Q$ if we prefer a field.) "Other answers" like writing $A$ as a $(2+3)times(2+3)$ block matrix, then doing the work in smaller pieces, may also lead to a good end, but for my taste, if i see a structural answer, and a computational one (Gauss scheme, block split, adjoint matrix, etc...) the structural one wins for me.
$endgroup$
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
add a comment |
$begingroup$
This matrix is a permutation matrix and also orthogonal. What do you know about inverses of orthogonal matrices?
$endgroup$
add a comment |
$begingroup$
The determinant of the matrix is not $0$, the determinant is $1$.
Hint:
Take a look at $A^2, A^3,A^4,dots$.
$endgroup$
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
add a comment |
$begingroup$
Note that this matrix is obtained from the identity matrix by exchanging columns (or rows), and that columns (and rows) are still linearly independent, so immediately we have that the determinant is not $0$. Even more precisely, we immediately have that the determinant is $1$ or $-1$. (Immediately= without doing any calculation)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064904%2ffind-the-inverse-of-the-following-matrix-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Interchange rows three times ($R_1-R_2, R_3-R_4,R_4-R_5$):
$$det(A)= begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}=(-1)^3begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}=-1ne 0.$$
Consider the expanded matrix and perform the same row interchanges:
$$begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}begin{vmatrix}
1 & 0 & 0 & 0 &0 \
0 & 1 & 0 & 0 &0 \
0 & 0 & 1 & 0&0 \
0 & 0 & 0 & 1 &0 \0&0&0&0&0
end{vmatrix} Rightarrow begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix} $$
Hence, the inverse matrix is:
$$A^{-1}=begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix}$$
$endgroup$
add a comment |
$begingroup$
Interchange rows three times ($R_1-R_2, R_3-R_4,R_4-R_5$):
$$det(A)= begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}=(-1)^3begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}=-1ne 0.$$
Consider the expanded matrix and perform the same row interchanges:
$$begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}begin{vmatrix}
1 & 0 & 0 & 0 &0 \
0 & 1 & 0 & 0 &0 \
0 & 0 & 1 & 0&0 \
0 & 0 & 0 & 1 &0 \0&0&0&0&0
end{vmatrix} Rightarrow begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix} $$
Hence, the inverse matrix is:
$$A^{-1}=begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix}$$
$endgroup$
add a comment |
$begingroup$
Interchange rows three times ($R_1-R_2, R_3-R_4,R_4-R_5$):
$$det(A)= begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}=(-1)^3begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}=-1ne 0.$$
Consider the expanded matrix and perform the same row interchanges:
$$begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}begin{vmatrix}
1 & 0 & 0 & 0 &0 \
0 & 1 & 0 & 0 &0 \
0 & 0 & 1 & 0&0 \
0 & 0 & 0 & 1 &0 \0&0&0&0&0
end{vmatrix} Rightarrow begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix} $$
Hence, the inverse matrix is:
$$A^{-1}=begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix}$$
$endgroup$
Interchange rows three times ($R_1-R_2, R_3-R_4,R_4-R_5$):
$$det(A)= begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}=(-1)^3begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}=-1ne 0.$$
Consider the expanded matrix and perform the same row interchanges:
$$begin{vmatrix}
0 & color{blue}1 & 0 & 0 &0 \
color{red}1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 0&color{green}1 \
0 & 0 & color{brown}1 & 0 &0 \0&0&0&color{purple}1&0
end{vmatrix}begin{vmatrix}
1 & 0 & 0 & 0 &0 \
0 & 1 & 0 & 0 &0 \
0 & 0 & 1 & 0&0 \
0 & 0 & 0 & 1 &0 \0&0&0&0&0
end{vmatrix} Rightarrow begin{vmatrix}
color{red}1 & 0 & 0 & 0 &0 \
0 & color{blue}1 & 0 & 0 &0 \
0 & 0 & color{brown}1 & 0& 0 \
0 & 0 & 0 & color{purple}1&0 \0&0&0&0&color{green}1
end{vmatrix}begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix} $$
Hence, the inverse matrix is:
$$A^{-1}=begin{vmatrix}
0 & 1 & 0 & 0 &0 \
1 & 0 & 0 & 0 &0 \
0 & 0 & 0 & 1&0 \
0 & 0 & 0 & 0 &1 \
0 & 0 & 1 & 0 &0
end{vmatrix}$$
answered Jan 7 at 17:08


farruhotafarruhota
19.9k2738
19.9k2738
add a comment |
add a comment |
$begingroup$
Note that the given matrix is a so-called permutation matrix, the inverse of it is the permutation matrix associated to the inverse permutation.
Later edit: The matrix $A$ works on a "generic vector" $x$ with components $x_1,dots, x_5$ as below by mapping it into a vector with components $x_{sigma(1)}, dots,x_{sigma(5)}$ for a particular permutation $sigma$. Explicitly:
$$
A
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}
0 & 1 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1 \
0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 0
end{bmatrix}
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}x_2\x_1\x_5\x_3\x_4end{bmatrix}
$$
The corresponding permutation $sigma$ (with the inverse $tau$) is of course
$$
sigma
=
binom{12345}{21534}=(12)(354) ,
qquadtext{ with }
tau:=sigma^{-1}=
binom{12345}{21453}=(12)(345) .
$$
Now associate in the natural way the permutation matrix for $tau$...
Note: It is important to see at a glance, that this matrix is a permutation matrix. (Exactly one $1$ entry on each row and/or column.) This is part of a structure. (One has a mapping / a representation of the symmetric group into the general linear group of the corresponding dimension over $Bbb Z$, or $Bbb Q$ if we prefer a field.) "Other answers" like writing $A$ as a $(2+3)times(2+3)$ block matrix, then doing the work in smaller pieces, may also lead to a good end, but for my taste, if i see a structural answer, and a computational one (Gauss scheme, block split, adjoint matrix, etc...) the structural one wins for me.
$endgroup$
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
add a comment |
$begingroup$
Note that the given matrix is a so-called permutation matrix, the inverse of it is the permutation matrix associated to the inverse permutation.
Later edit: The matrix $A$ works on a "generic vector" $x$ with components $x_1,dots, x_5$ as below by mapping it into a vector with components $x_{sigma(1)}, dots,x_{sigma(5)}$ for a particular permutation $sigma$. Explicitly:
$$
A
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}
0 & 1 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1 \
0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 0
end{bmatrix}
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}x_2\x_1\x_5\x_3\x_4end{bmatrix}
$$
The corresponding permutation $sigma$ (with the inverse $tau$) is of course
$$
sigma
=
binom{12345}{21534}=(12)(354) ,
qquadtext{ with }
tau:=sigma^{-1}=
binom{12345}{21453}=(12)(345) .
$$
Now associate in the natural way the permutation matrix for $tau$...
Note: It is important to see at a glance, that this matrix is a permutation matrix. (Exactly one $1$ entry on each row and/or column.) This is part of a structure. (One has a mapping / a representation of the symmetric group into the general linear group of the corresponding dimension over $Bbb Z$, or $Bbb Q$ if we prefer a field.) "Other answers" like writing $A$ as a $(2+3)times(2+3)$ block matrix, then doing the work in smaller pieces, may also lead to a good end, but for my taste, if i see a structural answer, and a computational one (Gauss scheme, block split, adjoint matrix, etc...) the structural one wins for me.
$endgroup$
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
add a comment |
$begingroup$
Note that the given matrix is a so-called permutation matrix, the inverse of it is the permutation matrix associated to the inverse permutation.
Later edit: The matrix $A$ works on a "generic vector" $x$ with components $x_1,dots, x_5$ as below by mapping it into a vector with components $x_{sigma(1)}, dots,x_{sigma(5)}$ for a particular permutation $sigma$. Explicitly:
$$
A
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}
0 & 1 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1 \
0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 0
end{bmatrix}
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}x_2\x_1\x_5\x_3\x_4end{bmatrix}
$$
The corresponding permutation $sigma$ (with the inverse $tau$) is of course
$$
sigma
=
binom{12345}{21534}=(12)(354) ,
qquadtext{ with }
tau:=sigma^{-1}=
binom{12345}{21453}=(12)(345) .
$$
Now associate in the natural way the permutation matrix for $tau$...
Note: It is important to see at a glance, that this matrix is a permutation matrix. (Exactly one $1$ entry on each row and/or column.) This is part of a structure. (One has a mapping / a representation of the symmetric group into the general linear group of the corresponding dimension over $Bbb Z$, or $Bbb Q$ if we prefer a field.) "Other answers" like writing $A$ as a $(2+3)times(2+3)$ block matrix, then doing the work in smaller pieces, may also lead to a good end, but for my taste, if i see a structural answer, and a computational one (Gauss scheme, block split, adjoint matrix, etc...) the structural one wins for me.
$endgroup$
Note that the given matrix is a so-called permutation matrix, the inverse of it is the permutation matrix associated to the inverse permutation.
Later edit: The matrix $A$ works on a "generic vector" $x$ with components $x_1,dots, x_5$ as below by mapping it into a vector with components $x_{sigma(1)}, dots,x_{sigma(5)}$ for a particular permutation $sigma$. Explicitly:
$$
A
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}
0 & 1 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 1 \
0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 1 & 0
end{bmatrix}
begin{bmatrix}x_1\x_2\x_3\x_4\x_5end{bmatrix}
=
begin{bmatrix}x_2\x_1\x_5\x_3\x_4end{bmatrix}
$$
The corresponding permutation $sigma$ (with the inverse $tau$) is of course
$$
sigma
=
binom{12345}{21534}=(12)(354) ,
qquadtext{ with }
tau:=sigma^{-1}=
binom{12345}{21453}=(12)(345) .
$$
Now associate in the natural way the permutation matrix for $tau$...
Note: It is important to see at a glance, that this matrix is a permutation matrix. (Exactly one $1$ entry on each row and/or column.) This is part of a structure. (One has a mapping / a representation of the symmetric group into the general linear group of the corresponding dimension over $Bbb Z$, or $Bbb Q$ if we prefer a field.) "Other answers" like writing $A$ as a $(2+3)times(2+3)$ block matrix, then doing the work in smaller pieces, may also lead to a good end, but for my taste, if i see a structural answer, and a computational one (Gauss scheme, block split, adjoint matrix, etc...) the structural one wins for me.
edited Jan 7 at 17:46
answered Jan 7 at 11:36
dan_fuleadan_fulea
6,4581312
6,4581312
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
add a comment |
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
$begingroup$
can u elaborate ur answer
$endgroup$
– jasmine
Jan 7 at 11:47
add a comment |
$begingroup$
This matrix is a permutation matrix and also orthogonal. What do you know about inverses of orthogonal matrices?
$endgroup$
add a comment |
$begingroup$
This matrix is a permutation matrix and also orthogonal. What do you know about inverses of orthogonal matrices?
$endgroup$
add a comment |
$begingroup$
This matrix is a permutation matrix and also orthogonal. What do you know about inverses of orthogonal matrices?
$endgroup$
This matrix is a permutation matrix and also orthogonal. What do you know about inverses of orthogonal matrices?
answered Jan 7 at 11:40
Andreas H.Andreas H.
1,26166
1,26166
add a comment |
add a comment |
$begingroup$
The determinant of the matrix is not $0$, the determinant is $1$.
Hint:
Take a look at $A^2, A^3,A^4,dots$.
$endgroup$
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
add a comment |
$begingroup$
The determinant of the matrix is not $0$, the determinant is $1$.
Hint:
Take a look at $A^2, A^3,A^4,dots$.
$endgroup$
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
add a comment |
$begingroup$
The determinant of the matrix is not $0$, the determinant is $1$.
Hint:
Take a look at $A^2, A^3,A^4,dots$.
$endgroup$
The determinant of the matrix is not $0$, the determinant is $1$.
Hint:
Take a look at $A^2, A^3,A^4,dots$.
answered Jan 7 at 11:34
5xum5xum
90.2k394161
90.2k394161
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
add a comment |
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
eigenvalue are $0$...i thinks det $A =0$ @Xum
$endgroup$
– jasmine
Jan 7 at 11:35
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
$begingroup$
@jasmine None of the eigenvalues of the matrix is $0$. And the determinant is $1$.
$endgroup$
– 5xum
Jan 7 at 11:43
add a comment |
$begingroup$
Note that this matrix is obtained from the identity matrix by exchanging columns (or rows), and that columns (and rows) are still linearly independent, so immediately we have that the determinant is not $0$. Even more precisely, we immediately have that the determinant is $1$ or $-1$. (Immediately= without doing any calculation)
$endgroup$
add a comment |
$begingroup$
Note that this matrix is obtained from the identity matrix by exchanging columns (or rows), and that columns (and rows) are still linearly independent, so immediately we have that the determinant is not $0$. Even more precisely, we immediately have that the determinant is $1$ or $-1$. (Immediately= without doing any calculation)
$endgroup$
add a comment |
$begingroup$
Note that this matrix is obtained from the identity matrix by exchanging columns (or rows), and that columns (and rows) are still linearly independent, so immediately we have that the determinant is not $0$. Even more precisely, we immediately have that the determinant is $1$ or $-1$. (Immediately= without doing any calculation)
$endgroup$
Note that this matrix is obtained from the identity matrix by exchanging columns (or rows), and that columns (and rows) are still linearly independent, so immediately we have that the determinant is not $0$. Even more precisely, we immediately have that the determinant is $1$ or $-1$. (Immediately= without doing any calculation)
answered Jan 7 at 11:38
MinatoMinato
467212
467212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064904%2ffind-the-inverse-of-the-following-matrix-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Columns are independent so the inverse exists.
$endgroup$
– Widawensen
Jan 7 at 15:17