How to do big files comparing in Big data platform?
Here are some big files coming in a day, not very frequent, 2-3 every single day, and they are converted into JSON format.
The file's content looks like:
[
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "6500781413",
"begin_date": null,
"end_date": "20191009",
"doc_file_name": "LEN_SPA_6500781413.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020544",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "40AH0135US",
"std_price": null,
"rebate_amt": "180",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
},
{
"mfg_partno": "40AJ0135US",
"std_price": null,
"rebate_amt": "210",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
}
]
},
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "5309745006",
"begin_date": null,
"end_date": "20190426",
"doc_file_name": "LEN_SPA_5309745006.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020101",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "10M8S0HU00",
"std_price": null,
"rebate_amt": "698",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
},
{
"mfg_partno": "20K5S0CM00",
"std_price": null,
"rebate_amt": "1083",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
}
]
}
]
This is a mock data file.In fact, it is a array with length 30000+.
My target is to compare the coming one with the latest one. And get the changed data.
The leader says I must use the big data techs. And the performance must be good.
We use Apache NIFI and hadoop big data tools to do it.
Is there some advice ?
apache-spark hadoop hive apache-nifi
add a comment |
Here are some big files coming in a day, not very frequent, 2-3 every single day, and they are converted into JSON format.
The file's content looks like:
[
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "6500781413",
"begin_date": null,
"end_date": "20191009",
"doc_file_name": "LEN_SPA_6500781413.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020544",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "40AH0135US",
"std_price": null,
"rebate_amt": "180",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
},
{
"mfg_partno": "40AJ0135US",
"std_price": null,
"rebate_amt": "210",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
}
]
},
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "5309745006",
"begin_date": null,
"end_date": "20190426",
"doc_file_name": "LEN_SPA_5309745006.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020101",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "10M8S0HU00",
"std_price": null,
"rebate_amt": "698",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
},
{
"mfg_partno": "20K5S0CM00",
"std_price": null,
"rebate_amt": "1083",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
}
]
}
]
This is a mock data file.In fact, it is a array with length 30000+.
My target is to compare the coming one with the latest one. And get the changed data.
The leader says I must use the big data techs. And the performance must be good.
We use Apache NIFI and hadoop big data tools to do it.
Is there some advice ?
apache-spark hadoop hive apache-nifi
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
1
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50
add a comment |
Here are some big files coming in a day, not very frequent, 2-3 every single day, and they are converted into JSON format.
The file's content looks like:
[
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "6500781413",
"begin_date": null,
"end_date": "20191009",
"doc_file_name": "LEN_SPA_6500781413.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020544",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "40AH0135US",
"std_price": null,
"rebate_amt": "180",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
},
{
"mfg_partno": "40AJ0135US",
"std_price": null,
"rebate_amt": "210",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
}
]
},
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "5309745006",
"begin_date": null,
"end_date": "20190426",
"doc_file_name": "LEN_SPA_5309745006.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020101",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "10M8S0HU00",
"std_price": null,
"rebate_amt": "698",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
},
{
"mfg_partno": "20K5S0CM00",
"std_price": null,
"rebate_amt": "1083",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
}
]
}
]
This is a mock data file.In fact, it is a array with length 30000+.
My target is to compare the coming one with the latest one. And get the changed data.
The leader says I must use the big data techs. And the performance must be good.
We use Apache NIFI and hadoop big data tools to do it.
Is there some advice ?
apache-spark hadoop hive apache-nifi
Here are some big files coming in a day, not very frequent, 2-3 every single day, and they are converted into JSON format.
The file's content looks like:
[
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "6500781413",
"begin_date": null,
"end_date": "20191009",
"doc_file_name": "LEN_SPA_6500781413.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020544",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "40AH0135US",
"std_price": null,
"rebate_amt": "180",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
},
{
"mfg_partno": "40AJ0135US",
"std_price": null,
"rebate_amt": "210",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180608",
"end_date": null
}
]
},
{
"spa_ref_data": {
"approval_action": "New",
"spa_ref_no": "5309745006",
"begin_date": null,
"end_date": "20190426",
"doc_file_name": "LEN_SPA_5309745006.json",
"LEN_V": "v1",
"version_no": null,
"spa_ref_id": null,
"spa_ref_notes": "MC00020101",
"vend_code": "LEN"
},
"cust_data": [
{
"cust_name": null,
"cust_no": null,
"cust_type": "E",
"state": null,
"country": null
},
{
"cust_name": null,
"cust_no": null,
"cust_type": "C",
"state": null,
"country": null
}
],
"product_data": [
{
"mfg_partno": "10M8S0HU00",
"std_price": null,
"rebate_amt": "698",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
},
{
"mfg_partno": "20K5S0CM00",
"std_price": null,
"rebate_amt": "1083",
"max_spa_qty": null,
"rebate_type": null,
"min_spa_qty": null,
"min_cust_qty": null,
"max_cust_qty": null,
"begin_date": "20180405",
"end_date": null
}
]
}
]
This is a mock data file.In fact, it is a array with length 30000+.
My target is to compare the coming one with the latest one. And get the changed data.
The leader says I must use the big data techs. And the performance must be good.
We use Apache NIFI and hadoop big data tools to do it.
Is there some advice ?
apache-spark hadoop hive apache-nifi
apache-spark hadoop hive apache-nifi
edited Nov 20 '18 at 14:05
cricket_007
80.7k1142110
80.7k1142110
asked Nov 20 '18 at 9:20
epicGeekepicGeek
275
275
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
1
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50
add a comment |
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
1
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
1
1
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50
add a comment |
1 Answer
1
active
oldest
votes
For example, you can use ExecuteScript processor with js scrpit to compare jsons. It works fast. Also you can split your big array json with SplitRecord processor and compare each one by executeScript proccessor. It also works good.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53389767%2fhow-to-do-big-files-comparing-in-big-data-platform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
For example, you can use ExecuteScript processor with js scrpit to compare jsons. It works fast. Also you can split your big array json with SplitRecord processor and compare each one by executeScript proccessor. It also works good.
add a comment |
For example, you can use ExecuteScript processor with js scrpit to compare jsons. It works fast. Also you can split your big array json with SplitRecord processor and compare each one by executeScript proccessor. It also works good.
add a comment |
For example, you can use ExecuteScript processor with js scrpit to compare jsons. It works fast. Also you can split your big array json with SplitRecord processor and compare each one by executeScript proccessor. It also works good.
For example, you can use ExecuteScript processor with js scrpit to compare jsons. It works fast. Also you can split your big array json with SplitRecord processor and compare each one by executeScript proccessor. It also works good.
answered Dec 4 '18 at 7:26
HereAndBeyondHereAndBeyond
4116
4116
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53389767%2fhow-to-do-big-files-comparing-in-big-data-platform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
are you containerising any of the data are you load them?
– shainnif
Nov 20 '18 at 13:54
1
It's unclear what your expected output is... If the performance "must be good", use a proper document database, not Hadoop
– cricket_007
Nov 20 '18 at 14:06
Also, how big are your files really? Array with 30000+ elements or even 100000 elements could easily fit into RAM => no special big data tools needed. Of course you can use them, but also consider normal data analysis frameworks (or code yourself if needed ;)
– Frank
Nov 22 '18 at 21:50