Intersection and conditioned set
I don't understand why if it's true that $P(Acap B|C)=P(A|C)cdot P(B|C)$ (formula, moreover, used in a number of exercises), in this case he writes:
probability statistics elementary-set-theory boolean-algebra
add a comment |
I don't understand why if it's true that $P(Acap B|C)=P(A|C)cdot P(B|C)$ (formula, moreover, used in a number of exercises), in this case he writes:
probability statistics elementary-set-theory boolean-algebra
1
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48
add a comment |
I don't understand why if it's true that $P(Acap B|C)=P(A|C)cdot P(B|C)$ (formula, moreover, used in a number of exercises), in this case he writes:
probability statistics elementary-set-theory boolean-algebra
I don't understand why if it's true that $P(Acap B|C)=P(A|C)cdot P(B|C)$ (formula, moreover, used in a number of exercises), in this case he writes:
probability statistics elementary-set-theory boolean-algebra
probability statistics elementary-set-theory boolean-algebra
asked Nov 21 '18 at 10:19
Marco Pittella
1258
1258
1
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48
add a comment |
1
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48
1
1
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48
add a comment |
1 Answer
1
active
oldest
votes
Example like the following:
Thanks again.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007529%2fintersection-and-conditioned-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Example like the following:
Thanks again.
add a comment |
Example like the following:
Thanks again.
add a comment |
Example like the following:
Thanks again.
Example like the following:
Thanks again.
answered Nov 21 '18 at 10:34
Marco Pittella
1258
1258
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007529%2fintersection-and-conditioned-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Actually, I do not believe that $P(Acap B|C)=P(A|C)cdot P(B|C)$ was used in the calculation. It seems more to be something like $P(Acap B|C)=P(A|B)cdot P(B|C)$. This is not true in general, there has to be some assumption on $A,B,C$. What is true however is that $P(Acap B|C)=P(A|B cap C)cdot P(B|C)$.
– Matthias Klupsch
Nov 21 '18 at 10:28
@MatthiasKlupsch Thanks for your answer. Well, you're welcome to watch the solution that i post below.
– Marco Pittella
Nov 21 '18 at 10:33
@MatthiasKlupsch I'm sorry for my reponse comment, i don't speak english so well. In any case, the photo up here is referring to the following exercise. You have 5 coins and $p_i$ is the probability that the $i$ coin gives Head (T), where $p_1=0,p_2=0,25,p_3=0,5,p_4=0,75,p_5=1$. One coin is extrracted and launched. You obtain Head (T). If the same $i$ coin launched again, what is the probability to obtain another Head (T)?
– Marco Pittella
Nov 21 '18 at 10:48