Does convergence of $Gamma(x)$ imply convergence of $Gamma(z)$? Is it generalisable?
If we have the gamma function in integral form $Gamma(x)=int_limits0^infty e^{-t}t^{x-1}dt$ and have proven that it converges for real $x>0$ (to a point), can we then immediately conclude that $Gamma(z)$ converges to a point if Re($z$)$>0$?
I'm asking this because we note that $t^{z-1}$ is complex and thus can be written in polar form $re^{ivarphi}$. The distance between the origin and $t^{z-1}$ is equal to $r>0$. We can now easily associate this distance with the distance between $x=r$ and the origin. We already know that $Gamma(x)$ converges, thus $Gamma(z)$ must converge to a given distance from the origin. However, we have completely ignored the angle $varphi$. Do we know that the angle converges? If so, how?
If $Gamma(z)$ converges, can we somehow generalise the idea?
complex-analysis gamma-function absolute-convergence
|
show 1 more comment
If we have the gamma function in integral form $Gamma(x)=int_limits0^infty e^{-t}t^{x-1}dt$ and have proven that it converges for real $x>0$ (to a point), can we then immediately conclude that $Gamma(z)$ converges to a point if Re($z$)$>0$?
I'm asking this because we note that $t^{z-1}$ is complex and thus can be written in polar form $re^{ivarphi}$. The distance between the origin and $t^{z-1}$ is equal to $r>0$. We can now easily associate this distance with the distance between $x=r$ and the origin. We already know that $Gamma(x)$ converges, thus $Gamma(z)$ must converge to a given distance from the origin. However, we have completely ignored the angle $varphi$. Do we know that the angle converges? If so, how?
If $Gamma(z)$ converges, can we somehow generalise the idea?
complex-analysis gamma-function absolute-convergence
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22
|
show 1 more comment
If we have the gamma function in integral form $Gamma(x)=int_limits0^infty e^{-t}t^{x-1}dt$ and have proven that it converges for real $x>0$ (to a point), can we then immediately conclude that $Gamma(z)$ converges to a point if Re($z$)$>0$?
I'm asking this because we note that $t^{z-1}$ is complex and thus can be written in polar form $re^{ivarphi}$. The distance between the origin and $t^{z-1}$ is equal to $r>0$. We can now easily associate this distance with the distance between $x=r$ and the origin. We already know that $Gamma(x)$ converges, thus $Gamma(z)$ must converge to a given distance from the origin. However, we have completely ignored the angle $varphi$. Do we know that the angle converges? If so, how?
If $Gamma(z)$ converges, can we somehow generalise the idea?
complex-analysis gamma-function absolute-convergence
If we have the gamma function in integral form $Gamma(x)=int_limits0^infty e^{-t}t^{x-1}dt$ and have proven that it converges for real $x>0$ (to a point), can we then immediately conclude that $Gamma(z)$ converges to a point if Re($z$)$>0$?
I'm asking this because we note that $t^{z-1}$ is complex and thus can be written in polar form $re^{ivarphi}$. The distance between the origin and $t^{z-1}$ is equal to $r>0$. We can now easily associate this distance with the distance between $x=r$ and the origin. We already know that $Gamma(x)$ converges, thus $Gamma(z)$ must converge to a given distance from the origin. However, we have completely ignored the angle $varphi$. Do we know that the angle converges? If so, how?
If $Gamma(z)$ converges, can we somehow generalise the idea?
complex-analysis gamma-function absolute-convergence
complex-analysis gamma-function absolute-convergence
edited Nov 22 '18 at 16:13
asked Nov 21 '18 at 11:45
Idea Flux
86
86
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22
|
show 1 more comment
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22
|
show 1 more comment
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007613%2fdoes-convergence-of-gammax-imply-convergence-of-gammaz-is-it-generali%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007613%2fdoes-convergence-of-gammax-imply-convergence-of-gammaz-is-it-generali%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What exactly do you mean by $int_a^b$. Is this a path integral from $a$ to $b$? Can it be any path? Why do you think that $int_a^b |f(z)|text{d}z$ is positive? What do you mean by "$|a| = infty$"
– Jakobian
Nov 21 '18 at 11:54
I have completely changed my question to 1) make it more accurate and 2) more understable. I hope everything is clear and correctly worded now.
– Idea Flux
Nov 22 '18 at 16:14
For $x =Re(z)$ and $0 < a < b < infty$ then $int_a^b e^{-t} t^{x-1}dt=int_a^b |e^{-t} t^{z-1}|dt$ so $Gamma(z,a,b)=int_a^b e^{-t} t^{z-1}dt$ converges. Since $e^{-u} u^{z-1}$ is analytic for $Re(u) > 0$ it implies that $Gamma(z,a,b)=oint_a^b e^{-t} t^{z-1}dt$ for any finite length path $ato b$. Letting $b to +infty$ you have a result for $Gamma(z) = lim_{b to +infty} Gamma(z,1/b,b)$.
– reuns
Nov 22 '18 at 20:31
Now a stronger result is that $Gamma(z) = lim_{Re(b) to +infty} Gamma(z,0,b)$ (for example $Gamma(z) = lim_{c to +infty} Gamma(z,0,c(1+i))$) and this is because $e^{-u}u^{z-1}$ decreases very fast as $Re(u) to +infty$ so that for any $Re(s) > 0$ then $lim_{c to +infty} oint_c^{cs} e^{-u} u^{z-1}du= 0$. The limiting case $s =pm i$ is interesting too.
– reuns
Nov 22 '18 at 20:31
@reuns Okay, so $x=$Re$(z)$ follows from $|e^{-t}t^{z-1}|=e^{-t}sqrt{t^{x+iy-1}cdot t^{x-iy-1}}$, then the equality between the integrals follows indeed, but why then "so $Gamma(z,a,b)=intlimits_a^b e^{-t}t^{z-1}dt$ converges"?
– Idea Flux
Nov 27 '18 at 12:22