Is there an algorithm to find relations in polynomial algebra?
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
add a comment |
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
add a comment |
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
In the context of equivariant cohomology for a GKM-manifold, I'm trying to compute the cohomology of the variety given by $x_1y_1+x_2y_2+x_3y_3=0$ with the action of $(mathbb{C}^*)^3$:
$$
((t_1,t_2,t_3),[x_1,x_2,x_3,y_1,y_2,y_3]) mapsto [t_1t_2t_3x_1,t_1t_2x_2,t_1t_3x_3,y_1,t_3y_2,t_2y_3].
$$
Thanks to a theorem of Goresky, Kottwitz, MacPherson, I can see the equivariant cohomology ring of the variety embedded as an algebra in $bigoplus^6 mathbb{C}[t_1,t_2,t_3]$.
I've found the generators for this algebra, that are
begin{align*}
a&=[1,1,1,1,1,1];\
b&=[0,t_3,t_2,t_3-t_1,t_2-t_1,t_3+t_2-t_1];\
c&=[0,0,t_2(t_2-t_3),t_1(t_1-t_3),(t_2-t_1)(t_2-t_3),t_2(t_2-t_1)];\
d&=[0,0,0,t_1(t_1-t_3),t_1(t_1-t_2),(t_1-t_3)(t_1-t_2)];\
e&=[0,0,0,0,t_1(t_1-t_2)(t_2-t_3),t_2(t_1-t_2)(t_1-t_3)];\
f&=[0,0,0,0,0,t_2t_3(t_1-t_2)(t_1-t_3)].
end{align*}
but I'm in trouble to fins the relations between them, so there exists an algorithm that can compute them for me?
abstract-algebra algebraic-geometry group-actions
abstract-algebra algebraic-geometry group-actions
asked Nov 22 '18 at 10:10


BobechBobech
699
699
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008949%2fis-there-an-algorithm-to-find-relations-in-polynomial-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008949%2fis-there-an-algorithm-to-find-relations-in-polynomial-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown