Reduction formula for $intfrac{dx}{(ax^2+b)^n}$
I recently stumbled upon the following reduction formula on the internet which I am so far unable to prove.
$$I_n=intfrac{mathrm{d}x}{(ax^2+b)^n}\I_n=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
I tried the substitution $x=sqrt{frac ba}t$, and it gave me
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intfrac{mathrm{d}t}{(t^2+1)^n}$$
To which I applied $t=tan u$:
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intcot^{n-1}u mathrm{d}u$$
I then used the $cot^nu$ reduction formula to find
$$I_n=frac{-b^{1/2-n}}{a^{1/2}}bigg(frac{cot^{n-2}u}{n-2}+intcot^{n-3}u mathrm{d}ubigg)$$
$$I_n=frac{-b^{1/2-n}cot^{n-2}u}{a^{1/2}(n-2)}-b^2I_{n-2}$$
Which is a reduction formula, but not the reduction formula.
Could someone provide a derivation of the reduction formula? Thanks.
calculus integration proof-explanation indefinite-integrals reduction-formula
add a comment |
I recently stumbled upon the following reduction formula on the internet which I am so far unable to prove.
$$I_n=intfrac{mathrm{d}x}{(ax^2+b)^n}\I_n=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
I tried the substitution $x=sqrt{frac ba}t$, and it gave me
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intfrac{mathrm{d}t}{(t^2+1)^n}$$
To which I applied $t=tan u$:
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intcot^{n-1}u mathrm{d}u$$
I then used the $cot^nu$ reduction formula to find
$$I_n=frac{-b^{1/2-n}}{a^{1/2}}bigg(frac{cot^{n-2}u}{n-2}+intcot^{n-3}u mathrm{d}ubigg)$$
$$I_n=frac{-b^{1/2-n}cot^{n-2}u}{a^{1/2}(n-2)}-b^2I_{n-2}$$
Which is a reduction formula, but not the reduction formula.
Could someone provide a derivation of the reduction formula? Thanks.
calculus integration proof-explanation indefinite-integrals reduction-formula
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03
add a comment |
I recently stumbled upon the following reduction formula on the internet which I am so far unable to prove.
$$I_n=intfrac{mathrm{d}x}{(ax^2+b)^n}\I_n=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
I tried the substitution $x=sqrt{frac ba}t$, and it gave me
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intfrac{mathrm{d}t}{(t^2+1)^n}$$
To which I applied $t=tan u$:
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intcot^{n-1}u mathrm{d}u$$
I then used the $cot^nu$ reduction formula to find
$$I_n=frac{-b^{1/2-n}}{a^{1/2}}bigg(frac{cot^{n-2}u}{n-2}+intcot^{n-3}u mathrm{d}ubigg)$$
$$I_n=frac{-b^{1/2-n}cot^{n-2}u}{a^{1/2}(n-2)}-b^2I_{n-2}$$
Which is a reduction formula, but not the reduction formula.
Could someone provide a derivation of the reduction formula? Thanks.
calculus integration proof-explanation indefinite-integrals reduction-formula
I recently stumbled upon the following reduction formula on the internet which I am so far unable to prove.
$$I_n=intfrac{mathrm{d}x}{(ax^2+b)^n}\I_n=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
I tried the substitution $x=sqrt{frac ba}t$, and it gave me
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intfrac{mathrm{d}t}{(t^2+1)^n}$$
To which I applied $t=tan u$:
$$I_n=frac{b^{1/2-n}}{a^{1/2}}intcot^{n-1}u mathrm{d}u$$
I then used the $cot^nu$ reduction formula to find
$$I_n=frac{-b^{1/2-n}}{a^{1/2}}bigg(frac{cot^{n-2}u}{n-2}+intcot^{n-3}u mathrm{d}ubigg)$$
$$I_n=frac{-b^{1/2-n}cot^{n-2}u}{a^{1/2}(n-2)}-b^2I_{n-2}$$
Which is a reduction formula, but not the reduction formula.
Could someone provide a derivation of the reduction formula? Thanks.
calculus integration proof-explanation indefinite-integrals reduction-formula
calculus integration proof-explanation indefinite-integrals reduction-formula
edited Nov 23 '18 at 0:56
clathratus
asked Nov 15 '18 at 4:41
clathratusclathratus
3,362331
3,362331
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03
add a comment |
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03
add a comment |
1 Answer
1
active
oldest
votes
Hint The appearance of the term in $frac{x}{(a x^2 + b)^{n - 1}}$ suggests applying integration by parts with $dv = dx$ and thus $u = (a x^2 + b)^{-n}$. Renaming $n$ to $m$ we get
$$I_m = u v - int v ,du = frac{x}{(a x^2 + b)^m} + 2 m int frac{a x^2 ,dx}{(a x^2 + b)^{m + 1}} .$$
Now, the integral on the right can be rewritten as a linear combination $p I_{m + 1} + qI_m$, so we can solve for $I_{m + 1}$ in terms of $I_m$ and replace $m$ with $n - 1$.
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999219%2freduction-formula-for-int-fracdxax2bn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint The appearance of the term in $frac{x}{(a x^2 + b)^{n - 1}}$ suggests applying integration by parts with $dv = dx$ and thus $u = (a x^2 + b)^{-n}$. Renaming $n$ to $m$ we get
$$I_m = u v - int v ,du = frac{x}{(a x^2 + b)^m} + 2 m int frac{a x^2 ,dx}{(a x^2 + b)^{m + 1}} .$$
Now, the integral on the right can be rewritten as a linear combination $p I_{m + 1} + qI_m$, so we can solve for $I_{m + 1}$ in terms of $I_m$ and replace $m$ with $n - 1$.
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
add a comment |
Hint The appearance of the term in $frac{x}{(a x^2 + b)^{n - 1}}$ suggests applying integration by parts with $dv = dx$ and thus $u = (a x^2 + b)^{-n}$. Renaming $n$ to $m$ we get
$$I_m = u v - int v ,du = frac{x}{(a x^2 + b)^m} + 2 m int frac{a x^2 ,dx}{(a x^2 + b)^{m + 1}} .$$
Now, the integral on the right can be rewritten as a linear combination $p I_{m + 1} + qI_m$, so we can solve for $I_{m + 1}$ in terms of $I_m$ and replace $m$ with $n - 1$.
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
add a comment |
Hint The appearance of the term in $frac{x}{(a x^2 + b)^{n - 1}}$ suggests applying integration by parts with $dv = dx$ and thus $u = (a x^2 + b)^{-n}$. Renaming $n$ to $m$ we get
$$I_m = u v - int v ,du = frac{x}{(a x^2 + b)^m} + 2 m int frac{a x^2 ,dx}{(a x^2 + b)^{m + 1}} .$$
Now, the integral on the right can be rewritten as a linear combination $p I_{m + 1} + qI_m$, so we can solve for $I_{m + 1}$ in terms of $I_m$ and replace $m$ with $n - 1$.
Hint The appearance of the term in $frac{x}{(a x^2 + b)^{n - 1}}$ suggests applying integration by parts with $dv = dx$ and thus $u = (a x^2 + b)^{-n}$. Renaming $n$ to $m$ we get
$$I_m = u v - int v ,du = frac{x}{(a x^2 + b)^m} + 2 m int frac{a x^2 ,dx}{(a x^2 + b)^{m + 1}} .$$
Now, the integral on the right can be rewritten as a linear combination $p I_{m + 1} + qI_m$, so we can solve for $I_{m + 1}$ in terms of $I_m$ and replace $m$ with $n - 1$.
edited Nov 15 '18 at 18:59
answered Nov 15 '18 at 5:00
TravisTravis
59.9k767146
59.9k767146
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
add a comment |
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
1
1
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
Ohhhhhhhhhhhhhhhhhhhhhhhhhhhhh. Thanks (+1)
– clathratus
Nov 15 '18 at 5:01
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
I'm glad you found it useful, cheers!
– Travis
Nov 15 '18 at 5:05
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
Based on what you said I was able to prove it last night. That's when I learned just how damn elegant it was! I would upvote this answer twice if I could. Where did you learn such a simple trick?
– clathratus
Nov 15 '18 at 18:52
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
I don't think I learned it anywhere in particular---really, the only trick here is reindexing from $n$ to $m = n - 1$. At any rate, I'm happy you found the method illuminating!
– Travis
Nov 15 '18 at 19:40
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
Yeah it was just so simple yet so unexpected. I'm always used to proving reduction formulas without having to use that trick.
– clathratus
Nov 15 '18 at 19:41
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999219%2freduction-formula-for-int-fracdxax2bn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I think you've found the reduction formula depends on $b$.
– Nosrati
Nov 15 '18 at 4:48
@Nosrati how so?
– clathratus
Nov 15 '18 at 4:49
Note that this method only works (at least without introducing complex numbers, which requires some care to resolve) if $a > 0, b geq 0$.
– Travis
Nov 15 '18 at 20:03