java.lang.UnsupportedOperationExceptionfieldIndex on a Row without schema is undefined: Exception on...
The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.
Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Following is the stacktrace
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
How to fix this code?
scala apache-spark
add a comment |
The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.
Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Following is the stacktrace
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
How to fix this code?
scala apache-spark
1
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23
add a comment |
The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.
Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Following is the stacktrace
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
How to fix this code?
scala apache-spark
The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.
Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Following is the stacktrace
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
How to fix this code?
scala apache-spark
scala apache-spark
edited Nov 21 '18 at 14:24
Bay Max
asked Nov 20 '18 at 16:03
Bay MaxBay Max
9710
9710
1
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23
add a comment |
1
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23
1
1
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23
add a comment |
2 Answers
2
active
oldest
votes
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
add a comment |
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53396949%2fjava-lang-unsupportedoperationexceptionfieldindex-on-a-row-without-schema-is-und%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
add a comment |
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
add a comment |
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
edited Dec 26 '18 at 17:37
answered Dec 26 '18 at 1:52
Leo CLeo C
10.6k2618
10.6k2618
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
add a comment |
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
Accepting the answer after the expanded illustration. Also I have already raised a Spark bug yesterday issues.apache.org/jira/browse/SPARK-26436
– Bay Max
Dec 26 '18 at 18:19
add a comment |
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
add a comment |
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
add a comment |
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
answered Jan 20 at 3:57
Bay MaxBay Max
9710
9710
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53396949%2fjava-lang-unsupportedoperationexceptionfieldindex-on-a-row-without-schema-is-und%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 '18 at 16:28
Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 '18 at 18:37
Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 '18 at 19:23