Orthogonal decomposition of vector v with respect to span W
I need to find the orthogonal decomposition of vector V
with respect to span W
$$
v=
begin{bmatrix}
2 \ -1 \ 5 \ 6 \
end{bmatrix}
$$
$$
w = span
begin{pmatrix}
begin{bmatrix}
1 \ 1 \ 1 \ 0
end{bmatrix},
begin{bmatrix}
1 \ 0 \ -1 \ 1
end{bmatrix}
end{pmatrix}
$$
I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $
matrices vectors orthogonality matrix-decomposition
add a comment |
I need to find the orthogonal decomposition of vector V
with respect to span W
$$
v=
begin{bmatrix}
2 \ -1 \ 5 \ 6 \
end{bmatrix}
$$
$$
w = span
begin{pmatrix}
begin{bmatrix}
1 \ 1 \ 1 \ 0
end{bmatrix},
begin{bmatrix}
1 \ 0 \ -1 \ 1
end{bmatrix}
end{pmatrix}
$$
I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $
matrices vectors orthogonality matrix-decomposition
add a comment |
I need to find the orthogonal decomposition of vector V
with respect to span W
$$
v=
begin{bmatrix}
2 \ -1 \ 5 \ 6 \
end{bmatrix}
$$
$$
w = span
begin{pmatrix}
begin{bmatrix}
1 \ 1 \ 1 \ 0
end{bmatrix},
begin{bmatrix}
1 \ 0 \ -1 \ 1
end{bmatrix}
end{pmatrix}
$$
I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $
matrices vectors orthogonality matrix-decomposition
I need to find the orthogonal decomposition of vector V
with respect to span W
$$
v=
begin{bmatrix}
2 \ -1 \ 5 \ 6 \
end{bmatrix}
$$
$$
w = span
begin{pmatrix}
begin{bmatrix}
1 \ 1 \ 1 \ 0
end{bmatrix},
begin{bmatrix}
1 \ 0 \ -1 \ 1
end{bmatrix}
end{pmatrix}
$$
I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $
matrices vectors orthogonality matrix-decomposition
matrices vectors orthogonality matrix-decomposition
asked Mar 6 '16 at 22:10
Max FiltenborgMax Filtenborg
2315
2315
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Project $v$ onto $W$:
$$begin{align}
text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
end{align}$$
Then, $z$ is given by $z = v - text{proj}_Wv$:
$$begin{align}
z &= v - text{proj}_Wv \
&= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
&= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
end{align}$$
$z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1686155%2forthogonal-decomposition-of-vector-v-with-respect-to-span-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Project $v$ onto $W$:
$$begin{align}
text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
end{align}$$
Then, $z$ is given by $z = v - text{proj}_Wv$:
$$begin{align}
z &= v - text{proj}_Wv \
&= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
&= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
end{align}$$
$z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
add a comment |
Project $v$ onto $W$:
$$begin{align}
text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
end{align}$$
Then, $z$ is given by $z = v - text{proj}_Wv$:
$$begin{align}
z &= v - text{proj}_Wv \
&= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
&= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
end{align}$$
$z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
add a comment |
Project $v$ onto $W$:
$$begin{align}
text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
end{align}$$
Then, $z$ is given by $z = v - text{proj}_Wv$:
$$begin{align}
z &= v - text{proj}_Wv \
&= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
&= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
end{align}$$
$z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.
Project $v$ onto $W$:
$$begin{align}
text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
&= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
end{align}$$
Then, $z$ is given by $z = v - text{proj}_Wv$:
$$begin{align}
z &= v - text{proj}_Wv \
&= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
&= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
end{align}$$
$z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.
answered Mar 6 '16 at 22:52
SplitInfinitySplitInfinity
78236
78236
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
add a comment |
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
– Max Filtenborg
Mar 7 '16 at 1:37
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
@MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
– SplitInfinity
Mar 7 '16 at 2:50
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1686155%2forthogonal-decomposition-of-vector-v-with-respect-to-span-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown