Orthogonal decomposition of vector v with respect to span W












0














I need to find the orthogonal decomposition of vector V
with respect to span W



$$
v=
begin{bmatrix}
2 \ -1 \ 5 \ 6 \
end{bmatrix}
$$
$$
w = span
begin{pmatrix}
begin{bmatrix}
1 \ 1 \ 1 \ 0
end{bmatrix},
begin{bmatrix}
1 \ 0 \ -1 \ 1
end{bmatrix}
end{pmatrix}
$$



I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $










share|cite|improve this question



























    0














    I need to find the orthogonal decomposition of vector V
    with respect to span W



    $$
    v=
    begin{bmatrix}
    2 \ -1 \ 5 \ 6 \
    end{bmatrix}
    $$
    $$
    w = span
    begin{pmatrix}
    begin{bmatrix}
    1 \ 1 \ 1 \ 0
    end{bmatrix},
    begin{bmatrix}
    1 \ 0 \ -1 \ 1
    end{bmatrix}
    end{pmatrix}
    $$



    I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $










    share|cite|improve this question

























      0












      0








      0







      I need to find the orthogonal decomposition of vector V
      with respect to span W



      $$
      v=
      begin{bmatrix}
      2 \ -1 \ 5 \ 6 \
      end{bmatrix}
      $$
      $$
      w = span
      begin{pmatrix}
      begin{bmatrix}
      1 \ 1 \ 1 \ 0
      end{bmatrix},
      begin{bmatrix}
      1 \ 0 \ -1 \ 1
      end{bmatrix}
      end{pmatrix}
      $$



      I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $










      share|cite|improve this question













      I need to find the orthogonal decomposition of vector V
      with respect to span W



      $$
      v=
      begin{bmatrix}
      2 \ -1 \ 5 \ 6 \
      end{bmatrix}
      $$
      $$
      w = span
      begin{pmatrix}
      begin{bmatrix}
      1 \ 1 \ 1 \ 0
      end{bmatrix},
      begin{bmatrix}
      1 \ 0 \ -1 \ 1
      end{bmatrix}
      end{pmatrix}
      $$



      I know that $ v = y + z $ where $ y in W $ and $ z in text{orthogonal complement of W} $







      matrices vectors orthogonality matrix-decomposition






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 6 '16 at 22:10









      Max FiltenborgMax Filtenborg

      2315




      2315






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Project $v$ onto $W$:



          $$begin{align}
          text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
          end{align}$$



          Then, $z$ is given by $z = v - text{proj}_Wv$:
          $$begin{align}
          z &= v - text{proj}_Wv \
          &= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
          &= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
          end{align}$$



          $z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.






          share|cite|improve this answer





















          • Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
            – Max Filtenborg
            Mar 7 '16 at 1:37












          • @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
            – SplitInfinity
            Mar 7 '16 at 2:50











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1686155%2forthogonal-decomposition-of-vector-v-with-respect-to-span-w%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Project $v$ onto $W$:



          $$begin{align}
          text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
          end{align}$$



          Then, $z$ is given by $z = v - text{proj}_Wv$:
          $$begin{align}
          z &= v - text{proj}_Wv \
          &= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
          &= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
          end{align}$$



          $z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.






          share|cite|improve this answer





















          • Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
            – Max Filtenborg
            Mar 7 '16 at 1:37












          • @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
            – SplitInfinity
            Mar 7 '16 at 2:50
















          0














          Project $v$ onto $W$:



          $$begin{align}
          text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
          end{align}$$



          Then, $z$ is given by $z = v - text{proj}_Wv$:
          $$begin{align}
          z &= v - text{proj}_Wv \
          &= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
          &= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
          end{align}$$



          $z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.






          share|cite|improve this answer





















          • Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
            – Max Filtenborg
            Mar 7 '16 at 1:37












          • @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
            – SplitInfinity
            Mar 7 '16 at 2:50














          0












          0








          0






          Project $v$ onto $W$:



          $$begin{align}
          text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
          end{align}$$



          Then, $z$ is given by $z = v - text{proj}_Wv$:
          $$begin{align}
          z &= v - text{proj}_Wv \
          &= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
          &= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
          end{align}$$



          $z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.






          share|cite|improve this answer












          Project $v$ onto $W$:



          $$begin{align}
          text{proj}_W v &= frac{1}{3} cdot left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} right ) begin{bmatrix}1 \ 1 \ 1 \ 0 end{bmatrix} + frac{1}{3}left( begin{bmatrix}2 & -1 & 5 & 6 end{bmatrix}begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} right ) begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}2 \ 2 \ 2 \ 0 end{bmatrix} + begin{bmatrix}1 \ 0 \ -1 \ 1 end{bmatrix} \
          &= begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix}
          end{align}$$



          Then, $z$ is given by $z = v - text{proj}_Wv$:
          $$begin{align}
          z &= v - text{proj}_Wv \
          &= begin{bmatrix}2 \ -1 \ 5 \ 6 end{bmatrix} - begin{bmatrix}3 \ 2 \ 1 \ 1 end{bmatrix} \
          &= begin{bmatrix}-1 \ -3 \ 4 \ 5 end{bmatrix}
          end{align}$$



          $z$ is indeed orthogonal to $W$ since its dot product with both vectors in the spanning set for $W$ is 0.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 6 '16 at 22:52









          SplitInfinitySplitInfinity

          78236




          78236












          • Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
            – Max Filtenborg
            Mar 7 '16 at 1:37












          • @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
            – SplitInfinity
            Mar 7 '16 at 2:50


















          • Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
            – Max Filtenborg
            Mar 7 '16 at 1:37












          • @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
            – SplitInfinity
            Mar 7 '16 at 2:50
















          Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
          – Max Filtenborg
          Mar 7 '16 at 1:37






          Isn't z's dot product with the second vector in the span not 0? Thanks for the help though
          – Max Filtenborg
          Mar 7 '16 at 1:37














          @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
          – SplitInfinity
          Mar 7 '16 at 2:50




          @MaxFiltenborg $(-1)(1) + (-3)(0) + (4)(-1) + (5)(1) = -1 + 0 -4 + 5 = 0$
          – SplitInfinity
          Mar 7 '16 at 2:50


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1686155%2forthogonal-decomposition-of-vector-v-with-respect-to-span-w%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith