Representations of the $mathfrak{su}(2)$ Lie algebra in the product space $Votimes Votimes V$
Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:
(*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.
Examples:
(1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).
(2) For arbitrary $d$, consider the representation
begin{eqnarray}
rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
end{eqnarray}
where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.
The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?
Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.
Any hints, references, or further examples will be welcomed. Thanks!
representation-theory lie-algebras
add a comment |
Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:
(*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.
Examples:
(1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).
(2) For arbitrary $d$, consider the representation
begin{eqnarray}
rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
end{eqnarray}
where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.
The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?
Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.
Any hints, references, or further examples will be welcomed. Thanks!
representation-theory lie-algebras
add a comment |
Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:
(*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.
Examples:
(1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).
(2) For arbitrary $d$, consider the representation
begin{eqnarray}
rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
end{eqnarray}
where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.
The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?
Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.
Any hints, references, or further examples will be welcomed. Thanks!
representation-theory lie-algebras
Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:
(*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.
Examples:
(1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).
(2) For arbitrary $d$, consider the representation
begin{eqnarray}
rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
end{eqnarray}
where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.
The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?
Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.
Any hints, references, or further examples will be welcomed. Thanks!
representation-theory lie-algebras
representation-theory lie-algebras
asked Nov 20 '18 at 18:28


Lagrenge
1208
1208
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006712%2frepresentations-of-the-mathfraksu2-lie-algebra-in-the-product-space-v-ot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006712%2frepresentations-of-the-mathfraksu2-lie-algebra-in-the-product-space-v-ot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown