Representations of the $mathfrak{su}(2)$ Lie algebra in the product space $Votimes Votimes V$












2














Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:



(*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.



Examples:



(1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).



(2) For arbitrary $d$, consider the representation
begin{eqnarray}
rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
end{eqnarray}

where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.



The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?



Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.



Any hints, references, or further examples will be welcomed. Thanks!










share|cite|improve this question



























    2














    Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:



    (*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.



    Examples:



    (1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).



    (2) For arbitrary $d$, consider the representation
    begin{eqnarray}
    rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
    rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
    rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
    end{eqnarray}

    where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.



    The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?



    Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.



    Any hints, references, or further examples will be welcomed. Thanks!










    share|cite|improve this question

























      2












      2








      2


      4





      Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:



      (*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.



      Examples:



      (1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).



      (2) For arbitrary $d$, consider the representation
      begin{eqnarray}
      rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
      rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
      rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
      end{eqnarray}

      where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.



      The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?



      Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.



      Any hints, references, or further examples will be welcomed. Thanks!










      share|cite|improve this question













      Let $V=mathbb{C}^d$ be a $d$-dimensional vector space over $mathbb{C}$. The problem is to find all possible representations $rho:mathfrak{l}to mathrm{End}(V^3)$ of the Lie algebra $mathfrak{l}=mathfrak{su}(2)$ in the product space $V^3=Votimes Votimes V$ with the following property:



      (*)There exists two elements $l_1,l_2in mathfrak{l}$ such that $rho(l_1)=A_{12}+Cequiv Aotimes mathbb{1}+C,rho(l_2)=A_{23}+Cequiv mathbb{1}otimes A +C$, where $Ain mathrm{End}(V^2)$ (i.e. acts in $Votimes V$), $mathbb{1}$ is the identity operator in $mathrm{End}(V)$, and $A_{12},A_{23}$ denotes two different ways of embedding of $A$ in $mathrm{End}(V^3)$. $Cin mathrm{End}(V^3)$ is a suitable "central element" that commutes with $rho(l)$ for $forall lin mathfrak{l}$.



      Examples:



      (1). For $d$=2, consider the representation $rho(s^x)=sigma^z_1 sigma^x_2/2,rho(s^z)=sigma^z_2 sigma^x_3/2,rho(s^y)=sigma^z_1 sigma^y_2sigma^x_3/2$, where $sigma^x,sigma^y,sigma^z$ are Pauli matrices. This is the 8-dimensional direct sum representation $frac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}oplusfrac{1}{2}$. We have $l_1=s^x,l_2=s^z,A=sigma^zotimessigma^x$ (or $A_{12}=sigma^z_1sigma^x_2,A_{23}=sigma^z_2sigma^x_3$), and $C=0$. So this representation satisfies the above property(*).



      (2) For arbitrary $d$, consider the representation
      begin{eqnarray}
      rho(s^x)=frac{2P_{12}-P_{23}-P_{13}}{3sqrt{6}}+frac{M}{6i}\
      rho(s^y)=frac{2P_{23}-P_{13}-P_{12}}{3sqrt{6}}+frac{M}{6i}\
      rho(s^z)=frac{2P_{13}-P_{12}-P_{23}}{3sqrt{6}}+frac{M}{6i},
      end{eqnarray}

      where $Pinmathrm{End}(V^2)$ is the permutation operator defined by $P(e_1otimes e_2)=e_2otimes e_1$ for $forall e_1,e_2in V$, and $P_{12},P_{23},P_{13}$ are the different embedding of $P$ in $mathrm{End}(V^3)$, e.g. $P_{13}(e_1otimes e_2otimes e_3)=(e_3otimes e_2otimes e_1)$, etc., and $M=[P_{12},P_{23}]=P_{12}P_{23}-P_{23}P_{12}=[P_{23},P_{13}]=[P_{13},P_{12}]$. Put it more formally, $rho$ maps $mathfrak{su}(2)$ to the group algebra $mathbb{C}(S_3)$ of the symmetry group $S_3$. Therefore, let $l_1=frac{2s^x-s^y-s^z}{sqrt{6}},l_2=frac{2s^y-s^z-s^x}{sqrt{6}}$, we have $$rho(l_1)=frac{P_{12}}{2}-frac{c}{6},~~~rho(l_2)=frac{P_{23}}{2}-frac{c}{6},$$ where $c=P_{12}+P_{23}+P_{13}$ is a central element of $mathbb{C}(S_3)$ and therefore commutes with $rho(l)$ for $forall lin mathfrak{su}(2)$. Therefore, this representation satisfies the property(*) with $A=P/2$ and $C=-c/6$. When $d=2$, this representation is the 8-dimensional direct sum representation $0^4oplus frac{1}{2}oplusfrac{1}{2}$.



      The above two are all the examples I know up to now. Is there a systematic way of finding all such representations? Interestingly, notice the angle between $l_1$ and $l_2$: in example(1), $angle(l_1,l_2)=pi/2$, in example(2), $angle(l_1,l_2)=2pi/3$. What are all possible allowed angles between $l_1$ and $l_2$ (infinitely many or finitely many)? Or are $pi/2,2pi/3$ the only allowed values of $angle(l_1,l_2)$?



      Here is an alternative formulation of the same problem: find all operators $Ain mathrm{End}(V^2)$ such that the set of operators ${A_{12}+C,A_{23}+C}$ in $mathrm{End}(V^3)$ generates the Lie algebra $mathfrak{su}(2)$, for a suitable $Cin mathrm{End}(V^3)$ that commutes with $A_{12},A_{23}$. In example (1) $A=sigma^zotimessigma^x,C=0$ and in example (2) $A=P/2,C=-(P_{12}+P_{23}+P_{13})/6$.



      Any hints, references, or further examples will be welcomed. Thanks!







      representation-theory lie-algebras






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 20 '18 at 18:28









      Lagrenge

      1208




      1208






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006712%2frepresentations-of-the-mathfraksu2-lie-algebra-in-the-product-space-v-ot%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006712%2frepresentations-of-the-mathfraksu2-lie-algebra-in-the-product-space-v-ot%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          Npm cannot find a required file even through it is in the searched directory

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith