Summation over multiple arguments
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
add a comment |
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
add a comment |
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
summation exponential-sum
edited Nov 21 '18 at 13:36


Jean-Claude Arbaut
14.7k63464
14.7k63464
asked Nov 21 '18 at 13:20
Learn4life
906
906
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007721%2fsummation-over-multiple-arguments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
edited Nov 21 '18 at 13:38
answered Nov 21 '18 at 13:32
smcc
4,297517
4,297517
add a comment |
add a comment |
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
answered Nov 21 '18 at 13:40


Michael Burr
26.6k23262
26.6k23262
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007721%2fsummation-over-multiple-arguments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown