The inequality $sum_{k=1}^n frac{1}{k^4} le 2 - frac{1}{sqrt n}$
Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.
inequality summation
add a comment |
Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.
inequality summation
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28
add a comment |
Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.
inequality summation
Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.
inequality summation
inequality summation
edited Nov 16 '18 at 12:29
asked Nov 16 '18 at 11:29
J. Abraham
453314
453314
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28
add a comment |
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28
add a comment |
2 Answers
2
active
oldest
votes
For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
add a comment |
The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$
$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$
Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have
$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$
So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001024%2fthe-inequality-sum-k-1n-frac1k4-le-2-frac1-sqrt-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
add a comment |
For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
add a comment |
For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$
answered Nov 21 '18 at 13:43
robjohn♦
265k27303624
265k27303624
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
add a comment |
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn♦
Nov 21 '18 at 17:47
add a comment |
The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$
$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$
Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have
$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$
So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
add a comment |
The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$
$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$
Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have
$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$
So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
add a comment |
The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$
$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$
Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have
$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$
So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.
The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$
$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$
Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have
$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$
So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.
edited Nov 21 '18 at 6:41
answered Nov 16 '18 at 12:31


Jevaut
788111
788111
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
add a comment |
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
Can you solve it without calculus?
– J. Abraham
Nov 16 '18 at 12:44
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 '18 at 13:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001024%2fthe-inequality-sum-k-1n-frac1k4-le-2-frac1-sqrt-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 '18 at 11:35
Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 '18 at 12:00
Fixed, sorry for my mistake
– J. Abraham
Nov 16 '18 at 12:18
You should fix the name of you post, too ...
– Stockfish
Nov 16 '18 at 12:28