Cauchy Schwartz Inequality Question: $(a^2+b^2)^3=c^2+d^2 implies frac{a^3}{c}+frac{b^3}{d}geq 1$
$begingroup$
If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.
Please help.
inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
add a comment |
$begingroup$
If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.
Please help.
inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11
add a comment |
$begingroup$
If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.
Please help.
inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.
Please help.
inequality cauchy-schwarz-inequality holder-inequality
inequality cauchy-schwarz-inequality holder-inequality
edited Jan 18 at 6:40
Michael Rozenberg
105k1892198
105k1892198
asked Jan 18 at 5:07
SaeeSaee
387
387
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11
add a comment |
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$
and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$
$endgroup$
add a comment |
$begingroup$
Because by Holder
$$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$
$endgroup$
add a comment |
$begingroup$
Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077868%2fcauchy-schwartz-inequality-question-a2b23-c2d2-implies-fraca3c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$
and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$
$endgroup$
add a comment |
$begingroup$
Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$
and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$
$endgroup$
add a comment |
$begingroup$
Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$
and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$
$endgroup$
Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$
and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$
answered Jan 18 at 6:21


Seewoo LeeSeewoo Lee
6,959927
6,959927
add a comment |
add a comment |
$begingroup$
Because by Holder
$$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$
$endgroup$
add a comment |
$begingroup$
Because by Holder
$$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$
$endgroup$
add a comment |
$begingroup$
Because by Holder
$$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$
$endgroup$
Because by Holder
$$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$
answered Jan 18 at 6:35
Michael RozenbergMichael Rozenberg
105k1892198
105k1892198
add a comment |
add a comment |
$begingroup$
Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $
$endgroup$
add a comment |
$begingroup$
Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $
$endgroup$
add a comment |
$begingroup$
Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $
$endgroup$
Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $
answered Jan 18 at 6:42


DeepSeaDeepSea
71.3k54487
71.3k54487
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077868%2fcauchy-schwartz-inequality-question-a2b23-c2d2-implies-fraca3c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11