Cauchy Schwartz Inequality Question: $(a^2+b^2)^3=c^2+d^2 implies frac{a^3}{c}+frac{b^3}{d}geq 1$












0












$begingroup$



If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.




Please help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
    $endgroup$
    – Aniruddh Venkatesan
    Jan 18 at 5:11
















0












$begingroup$



If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.




Please help.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
    $endgroup$
    – Aniruddh Venkatesan
    Jan 18 at 5:11














0












0








0


2



$begingroup$



If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.




Please help.










share|cite|improve this question











$endgroup$





If $(a^2+b^2)^3=c^2+d^2$, prove that $frac{a^3}{c}+frac{b^3}{d}geq 1$.




Please help.







inequality cauchy-schwarz-inequality holder-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 6:40









Michael Rozenberg

105k1892198




105k1892198










asked Jan 18 at 5:07









SaeeSaee

387




387












  • $begingroup$
    Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
    $endgroup$
    – Aniruddh Venkatesan
    Jan 18 at 5:11


















  • $begingroup$
    Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
    $endgroup$
    – Aniruddh Venkatesan
    Jan 18 at 5:11
















$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11




$begingroup$
Can you explain why you think Cauchy Schwarz Inequality is the best approach for this problem
$endgroup$
– Aniruddh Venkatesan
Jan 18 at 5:11










3 Answers
3






active

oldest

votes


















1












$begingroup$

Hint: Use
$$
(a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
$$

and
$$
left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Because by Holder
    $$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077868%2fcauchy-schwartz-inequality-question-a2b23-c2d2-implies-fraca3c%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Hint: Use
        $$
        (a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
        $$

        and
        $$
        left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
        $$






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          Hint: Use
          $$
          (a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
          $$

          and
          $$
          left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
          $$






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            Hint: Use
            $$
            (a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
            $$

            and
            $$
            left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
            $$






            share|cite|improve this answer









            $endgroup$



            Hint: Use
            $$
            (a^{2} + b^{2})(c^{2} + d^{2}) geq (ac + bd)^{2}
            $$

            and
            $$
            left( frac{a^{3}}{c} + frac{b^{3}}{d}right)(ac+bd) geq (a^{2} + b^{2})^{2}.
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 18 at 6:21









            Seewoo LeeSeewoo Lee

            6,959927




            6,959927























                1












                $begingroup$

                Because by Holder
                $$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  Because by Holder
                  $$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Because by Holder
                    $$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$






                    share|cite|improve this answer









                    $endgroup$



                    Because by Holder
                    $$left(frac{a^3}{c}+frac{b^3}{d}right)^2(c^2+d^2)geq(a^2+b^2)^3.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 18 at 6:35









                    Michael RozenbergMichael Rozenberg

                    105k1892198




                    105k1892198























                        1












                        $begingroup$

                        Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $






                            share|cite|improve this answer









                            $endgroup$



                            Using the standard and the Angel forms of the Cauchy-Schwarz inequality: $LHS = dfrac{(a^2)^2}{ac}+ dfrac{(b^2)^2}{bd}ge dfrac{(a^2+b^2)^2}{ac+bd}= dfrac{(a^2+b^2)^3}{(a^2+b^2)(ac+bd)}= dfrac{c^2+d^2}{(a^2+b^2)(ac+bd)}ge dfrac{c^2+d^2}{(a^2+b^2)cdot sqrt{a^2+b^2}cdot sqrt{c^2+d^2}}= sqrt{dfrac{c^2+d^2}{(a^2+b^2)^3}}= sqrt{1} = 1= RHS. $







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 18 at 6:42









                            DeepSeaDeepSea

                            71.3k54487




                            71.3k54487






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077868%2fcauchy-schwartz-inequality-question-a2b23-c2d2-implies-fraca3c%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                Npm cannot find a required file even through it is in the searched directory

                                How to fix TextFormField cause rebuild widget in Flutter