Derivaton of Chernofff's bound on Bayes error for Multivariate Gaussian distribution
$begingroup$
I was following derivation of Chernoffs bound for Bayes error Given in the book Pattern recognition by Duda Hart and Stork. However there is a minor difference between the results in book and details i have worked out. Please guid me where I am wrong.
We know that Bayes probabilities for classifying $x$ in two classes $omega_1$ and $omega_2$ are given by $P(omega_1)p(x|omega_1)$ and $P(omega_2)p(x|omega_2)$. So Bayes error is $int_x min(P(omega_1)p(x|omega_1), P(omega_2)p(x|omega_2)) dx $.
We note that $min(a,b) le a^beta b^{(1-beta)}$ for $a, b>0$, so Bayes error is bounded by $P(omega_1)^beta P(omega_2)^ {1-beta}int_x p(x|omega_1)^beta p(x|omega_2)^{1-beta} dx$.
We consider a case where class conditional probabilities are Normal $p(x|omega_1)$ is given by $mathcal N(mu_1, Sigma_1)$ and $p(x|omega_2)$ is given by $mathcal N(mu_2, Sigma_2)$. then Bayes error is bounded by
$P(omega_1)^beta P(omega_2)^ {1-beta}int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$.
$int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$
$=frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx$ where $L =(x-mu_1)^tbeta Sigma_1^{-1}(x-mu_1)+ (x-mu_2)^t(1-beta) Sigma_2^{-1}(x-mu_12)$
Let $A= betaSigma_1^{-1}$ , $B= (1-beta)Sigma_2^{-1}$, $y=(x-mu_1)$ and $a=mu_2-mu_1$
Then $L=y^tAy+(y-a)^tB(y-a)$
$=y^t(A+B)y -a^tBy -y^tBa+a^tBa$
$=y^t(A+B)y-2a^tBy+a^tBa$ , as B is symmetric
As (A+B) is positive definite matrix it can be composed into a matrix $P$ such that $P^tP=(A+B)$
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy +a^tBa$
Note that $(a^tB(A+B)^{-1}P^t)(a^tB(A+B)^{-1}P^t)^t= a^tB(A+B)^{-1}P^tP(A+B)^{-1}Ba = a^tB(A+B)^{-1}Ba$
Also
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy + a^tB(A+B)^{-1}Ba - a^tB(A+B)^{-1}Ba +a^tBa$
Note that $-a^tB(A+B)^{-1}Ba +a^tBa= a^t[B-B(A+B)^{-1}B]a= a^t[B(A+B)^{-1}(A+B)-B(A+B)^{-1}B]a= a^tB(A+B)^{-1}Aa$
Let $z=y-(A+B)^{-1}Ba=x-mu_1-(A+B)^{-1}Ba$
$L= (Pz)^tPz+ a^tB(A+B)^{-1}Aa$
$= z^t(A+B)z+ a^tB(A+B)^{-1}Aa$
So,
$frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx=
exp^{-frac{1}{2}a^tB(A+B)^{-1}Aa}frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_zexp^{-frac{1}{2}z^t(A+B)z} dz $
Note that $(A+B)=A(A^{-1}+B^{-1})B$
So $(A+B)^{-1}=B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}$
Also it is known that $int_zexp^{-frac{1}{2}z^t(A+B)z} dz = sqrt{(2 pi)^d |(A+B)^{-1}|} $
So $exp^{-1/2L}$ is given by $exp^{-frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a}sqrt{frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} }$
Expressing $exp^{-1/2L}$ as $exp^{-k}$
$k= frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a - frac{1}{2} log frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} $
$A^{-1}+B^{-1}= frac{Sigma_1}{beta} + frac{Sigma_2}{1-beta}= frac{(1-beta) Sigma_1 + beta Sigma_2}{beta(1-beta)} $
$|(A+B)^{-1}|=|B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}|= frac{|Sigma_1||Sigma_2|}{|(1-beta) Sigma_1 + beta Sigma_2|}$
So $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_1 + beta Sigma_2]^{-1}a - frac{1}{2} log frac{|Sigma_1|^{1-beta}|Sigma_2|^beta}{|(1-beta) Sigma_1 + beta Sigma_2|} $
In the book $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_2 + beta Sigma_1]^{-1}a - frac{1}{2} log frac{|Sigma_2|^{1-beta}|Sigma_1|^beta}{|(1-beta) Sigma_2 + beta Sigma_1|} $. But from the diagrams function does not seem be be symmetric on $beta$. Please let me know where I have gone wrong
probability bayesian
$endgroup$
add a comment |
$begingroup$
I was following derivation of Chernoffs bound for Bayes error Given in the book Pattern recognition by Duda Hart and Stork. However there is a minor difference between the results in book and details i have worked out. Please guid me where I am wrong.
We know that Bayes probabilities for classifying $x$ in two classes $omega_1$ and $omega_2$ are given by $P(omega_1)p(x|omega_1)$ and $P(omega_2)p(x|omega_2)$. So Bayes error is $int_x min(P(omega_1)p(x|omega_1), P(omega_2)p(x|omega_2)) dx $.
We note that $min(a,b) le a^beta b^{(1-beta)}$ for $a, b>0$, so Bayes error is bounded by $P(omega_1)^beta P(omega_2)^ {1-beta}int_x p(x|omega_1)^beta p(x|omega_2)^{1-beta} dx$.
We consider a case where class conditional probabilities are Normal $p(x|omega_1)$ is given by $mathcal N(mu_1, Sigma_1)$ and $p(x|omega_2)$ is given by $mathcal N(mu_2, Sigma_2)$. then Bayes error is bounded by
$P(omega_1)^beta P(omega_2)^ {1-beta}int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$.
$int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$
$=frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx$ where $L =(x-mu_1)^tbeta Sigma_1^{-1}(x-mu_1)+ (x-mu_2)^t(1-beta) Sigma_2^{-1}(x-mu_12)$
Let $A= betaSigma_1^{-1}$ , $B= (1-beta)Sigma_2^{-1}$, $y=(x-mu_1)$ and $a=mu_2-mu_1$
Then $L=y^tAy+(y-a)^tB(y-a)$
$=y^t(A+B)y -a^tBy -y^tBa+a^tBa$
$=y^t(A+B)y-2a^tBy+a^tBa$ , as B is symmetric
As (A+B) is positive definite matrix it can be composed into a matrix $P$ such that $P^tP=(A+B)$
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy +a^tBa$
Note that $(a^tB(A+B)^{-1}P^t)(a^tB(A+B)^{-1}P^t)^t= a^tB(A+B)^{-1}P^tP(A+B)^{-1}Ba = a^tB(A+B)^{-1}Ba$
Also
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy + a^tB(A+B)^{-1}Ba - a^tB(A+B)^{-1}Ba +a^tBa$
Note that $-a^tB(A+B)^{-1}Ba +a^tBa= a^t[B-B(A+B)^{-1}B]a= a^t[B(A+B)^{-1}(A+B)-B(A+B)^{-1}B]a= a^tB(A+B)^{-1}Aa$
Let $z=y-(A+B)^{-1}Ba=x-mu_1-(A+B)^{-1}Ba$
$L= (Pz)^tPz+ a^tB(A+B)^{-1}Aa$
$= z^t(A+B)z+ a^tB(A+B)^{-1}Aa$
So,
$frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx=
exp^{-frac{1}{2}a^tB(A+B)^{-1}Aa}frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_zexp^{-frac{1}{2}z^t(A+B)z} dz $
Note that $(A+B)=A(A^{-1}+B^{-1})B$
So $(A+B)^{-1}=B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}$
Also it is known that $int_zexp^{-frac{1}{2}z^t(A+B)z} dz = sqrt{(2 pi)^d |(A+B)^{-1}|} $
So $exp^{-1/2L}$ is given by $exp^{-frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a}sqrt{frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} }$
Expressing $exp^{-1/2L}$ as $exp^{-k}$
$k= frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a - frac{1}{2} log frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} $
$A^{-1}+B^{-1}= frac{Sigma_1}{beta} + frac{Sigma_2}{1-beta}= frac{(1-beta) Sigma_1 + beta Sigma_2}{beta(1-beta)} $
$|(A+B)^{-1}|=|B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}|= frac{|Sigma_1||Sigma_2|}{|(1-beta) Sigma_1 + beta Sigma_2|}$
So $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_1 + beta Sigma_2]^{-1}a - frac{1}{2} log frac{|Sigma_1|^{1-beta}|Sigma_2|^beta}{|(1-beta) Sigma_1 + beta Sigma_2|} $
In the book $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_2 + beta Sigma_1]^{-1}a - frac{1}{2} log frac{|Sigma_2|^{1-beta}|Sigma_1|^beta}{|(1-beta) Sigma_2 + beta Sigma_1|} $. But from the diagrams function does not seem be be symmetric on $beta$. Please let me know where I have gone wrong
probability bayesian
$endgroup$
add a comment |
$begingroup$
I was following derivation of Chernoffs bound for Bayes error Given in the book Pattern recognition by Duda Hart and Stork. However there is a minor difference between the results in book and details i have worked out. Please guid me where I am wrong.
We know that Bayes probabilities for classifying $x$ in two classes $omega_1$ and $omega_2$ are given by $P(omega_1)p(x|omega_1)$ and $P(omega_2)p(x|omega_2)$. So Bayes error is $int_x min(P(omega_1)p(x|omega_1), P(omega_2)p(x|omega_2)) dx $.
We note that $min(a,b) le a^beta b^{(1-beta)}$ for $a, b>0$, so Bayes error is bounded by $P(omega_1)^beta P(omega_2)^ {1-beta}int_x p(x|omega_1)^beta p(x|omega_2)^{1-beta} dx$.
We consider a case where class conditional probabilities are Normal $p(x|omega_1)$ is given by $mathcal N(mu_1, Sigma_1)$ and $p(x|omega_2)$ is given by $mathcal N(mu_2, Sigma_2)$. then Bayes error is bounded by
$P(omega_1)^beta P(omega_2)^ {1-beta}int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$.
$int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$
$=frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx$ where $L =(x-mu_1)^tbeta Sigma_1^{-1}(x-mu_1)+ (x-mu_2)^t(1-beta) Sigma_2^{-1}(x-mu_12)$
Let $A= betaSigma_1^{-1}$ , $B= (1-beta)Sigma_2^{-1}$, $y=(x-mu_1)$ and $a=mu_2-mu_1$
Then $L=y^tAy+(y-a)^tB(y-a)$
$=y^t(A+B)y -a^tBy -y^tBa+a^tBa$
$=y^t(A+B)y-2a^tBy+a^tBa$ , as B is symmetric
As (A+B) is positive definite matrix it can be composed into a matrix $P$ such that $P^tP=(A+B)$
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy +a^tBa$
Note that $(a^tB(A+B)^{-1}P^t)(a^tB(A+B)^{-1}P^t)^t= a^tB(A+B)^{-1}P^tP(A+B)^{-1}Ba = a^tB(A+B)^{-1}Ba$
Also
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy + a^tB(A+B)^{-1}Ba - a^tB(A+B)^{-1}Ba +a^tBa$
Note that $-a^tB(A+B)^{-1}Ba +a^tBa= a^t[B-B(A+B)^{-1}B]a= a^t[B(A+B)^{-1}(A+B)-B(A+B)^{-1}B]a= a^tB(A+B)^{-1}Aa$
Let $z=y-(A+B)^{-1}Ba=x-mu_1-(A+B)^{-1}Ba$
$L= (Pz)^tPz+ a^tB(A+B)^{-1}Aa$
$= z^t(A+B)z+ a^tB(A+B)^{-1}Aa$
So,
$frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx=
exp^{-frac{1}{2}a^tB(A+B)^{-1}Aa}frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_zexp^{-frac{1}{2}z^t(A+B)z} dz $
Note that $(A+B)=A(A^{-1}+B^{-1})B$
So $(A+B)^{-1}=B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}$
Also it is known that $int_zexp^{-frac{1}{2}z^t(A+B)z} dz = sqrt{(2 pi)^d |(A+B)^{-1}|} $
So $exp^{-1/2L}$ is given by $exp^{-frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a}sqrt{frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} }$
Expressing $exp^{-1/2L}$ as $exp^{-k}$
$k= frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a - frac{1}{2} log frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} $
$A^{-1}+B^{-1}= frac{Sigma_1}{beta} + frac{Sigma_2}{1-beta}= frac{(1-beta) Sigma_1 + beta Sigma_2}{beta(1-beta)} $
$|(A+B)^{-1}|=|B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}|= frac{|Sigma_1||Sigma_2|}{|(1-beta) Sigma_1 + beta Sigma_2|}$
So $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_1 + beta Sigma_2]^{-1}a - frac{1}{2} log frac{|Sigma_1|^{1-beta}|Sigma_2|^beta}{|(1-beta) Sigma_1 + beta Sigma_2|} $
In the book $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_2 + beta Sigma_1]^{-1}a - frac{1}{2} log frac{|Sigma_2|^{1-beta}|Sigma_1|^beta}{|(1-beta) Sigma_2 + beta Sigma_1|} $. But from the diagrams function does not seem be be symmetric on $beta$. Please let me know where I have gone wrong
probability bayesian
$endgroup$
I was following derivation of Chernoffs bound for Bayes error Given in the book Pattern recognition by Duda Hart and Stork. However there is a minor difference between the results in book and details i have worked out. Please guid me where I am wrong.
We know that Bayes probabilities for classifying $x$ in two classes $omega_1$ and $omega_2$ are given by $P(omega_1)p(x|omega_1)$ and $P(omega_2)p(x|omega_2)$. So Bayes error is $int_x min(P(omega_1)p(x|omega_1), P(omega_2)p(x|omega_2)) dx $.
We note that $min(a,b) le a^beta b^{(1-beta)}$ for $a, b>0$, so Bayes error is bounded by $P(omega_1)^beta P(omega_2)^ {1-beta}int_x p(x|omega_1)^beta p(x|omega_2)^{1-beta} dx$.
We consider a case where class conditional probabilities are Normal $p(x|omega_1)$ is given by $mathcal N(mu_1, Sigma_1)$ and $p(x|omega_2)$ is given by $mathcal N(mu_2, Sigma_2)$. then Bayes error is bounded by
$P(omega_1)^beta P(omega_2)^ {1-beta}int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$.
$int_x mathcal N(mu_1, Sigma_1)^beta mathcal N(mu_2, Sigma_2)^{1-beta} dx$
$=frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx$ where $L =(x-mu_1)^tbeta Sigma_1^{-1}(x-mu_1)+ (x-mu_2)^t(1-beta) Sigma_2^{-1}(x-mu_12)$
Let $A= betaSigma_1^{-1}$ , $B= (1-beta)Sigma_2^{-1}$, $y=(x-mu_1)$ and $a=mu_2-mu_1$
Then $L=y^tAy+(y-a)^tB(y-a)$
$=y^t(A+B)y -a^tBy -y^tBa+a^tBa$
$=y^t(A+B)y-2a^tBy+a^tBa$ , as B is symmetric
As (A+B) is positive definite matrix it can be composed into a matrix $P$ such that $P^tP=(A+B)$
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy +a^tBa$
Note that $(a^tB(A+B)^{-1}P^t)(a^tB(A+B)^{-1}P^t)^t= a^tB(A+B)^{-1}P^tP(A+B)^{-1}Ba = a^tB(A+B)^{-1}Ba$
Also
$L= (Py)^t(Py) -2a^tB(A+B)^{-1}P^tPy + a^tB(A+B)^{-1}Ba - a^tB(A+B)^{-1}Ba +a^tBa$
Note that $-a^tB(A+B)^{-1}Ba +a^tBa= a^t[B-B(A+B)^{-1}B]a= a^t[B(A+B)^{-1}(A+B)-B(A+B)^{-1}B]a= a^tB(A+B)^{-1}Aa$
Let $z=y-(A+B)^{-1}Ba=x-mu_1-(A+B)^{-1}Ba$
$L= (Pz)^tPz+ a^tB(A+B)^{-1}Aa$
$= z^t(A+B)z+ a^tB(A+B)^{-1}Aa$
So,
$frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_xexp^{-1/2L} dx=
exp^{-frac{1}{2}a^tB(A+B)^{-1}Aa}frac {1}{sqrt{(2 pi)^d |Sigma_1|^beta|Sigma_2|^{(1-beta)}}}int_zexp^{-frac{1}{2}z^t(A+B)z} dz $
Note that $(A+B)=A(A^{-1}+B^{-1})B$
So $(A+B)^{-1}=B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}$
Also it is known that $int_zexp^{-frac{1}{2}z^t(A+B)z} dz = sqrt{(2 pi)^d |(A+B)^{-1}|} $
So $exp^{-1/2L}$ is given by $exp^{-frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a}sqrt{frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} }$
Expressing $exp^{-1/2L}$ as $exp^{-k}$
$k= frac{1}{2}a^t(A^{-1}+B^{-1})^{-1}a - frac{1}{2} log frac {|(A+B)^{-1}|}{ |Sigma_1|^beta|Sigma_2|^{(1-beta)}} $
$A^{-1}+B^{-1}= frac{Sigma_1}{beta} + frac{Sigma_2}{1-beta}= frac{(1-beta) Sigma_1 + beta Sigma_2}{beta(1-beta)} $
$|(A+B)^{-1}|=|B^{-1}(A^{-1}+B^{-1})^{-1}A^{-1}|= frac{|Sigma_1||Sigma_2|}{|(1-beta) Sigma_1 + beta Sigma_2|}$
So $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_1 + beta Sigma_2]^{-1}a - frac{1}{2} log frac{|Sigma_1|^{1-beta}|Sigma_2|^beta}{|(1-beta) Sigma_1 + beta Sigma_2|} $
In the book $k= frac{beta(1-beta)}{2}a^t[(1-beta)Sigma_2 + beta Sigma_1]^{-1}a - frac{1}{2} log frac{|Sigma_2|^{1-beta}|Sigma_1|^beta}{|(1-beta) Sigma_2 + beta Sigma_1|} $. But from the diagrams function does not seem be be symmetric on $beta$. Please let me know where I have gone wrong
probability bayesian
probability bayesian
asked Jan 11 at 7:46


CuriousCurious
889516
889516
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069583%2fderivaton-of-chernofffs-bound-on-bayes-error-for-multivariate-gaussian-distribu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069583%2fderivaton-of-chernofffs-bound-on-bayes-error-for-multivariate-gaussian-distribu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown