Integral of Laplace transform












0












$begingroup$


Consider the following theorem:




Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.




One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:



$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.



This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:



$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:




Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.




The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?



However, is my reasoning correct or should I settle with the original version of the theorem?



Furthermore, in the original version $sigmain mathbb{R}$, right?



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
    $endgroup$
    – reuns
    Jan 11 at 15:04
















0












$begingroup$


Consider the following theorem:




Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.




One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:



$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.



This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:



$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:




Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.




The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?



However, is my reasoning correct or should I settle with the original version of the theorem?



Furthermore, in the original version $sigmain mathbb{R}$, right?



Thanks in advance!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
    $endgroup$
    – reuns
    Jan 11 at 15:04














0












0








0





$begingroup$


Consider the following theorem:




Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.




One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:



$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.



This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:



$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:




Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.




The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?



However, is my reasoning correct or should I settle with the original version of the theorem?



Furthermore, in the original version $sigmain mathbb{R}$, right?



Thanks in advance!










share|cite|improve this question









$endgroup$




Consider the following theorem:




Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.




One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:



$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.



This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:



$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:




Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.




The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?



However, is my reasoning correct or should I settle with the original version of the theorem?



Furthermore, in the original version $sigmain mathbb{R}$, right?



Thanks in advance!







complex-analysis proof-verification laplace-transform






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 11 at 12:35









LeonardoLeonardo

3449




3449












  • $begingroup$
    Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
    $endgroup$
    – reuns
    Jan 11 at 15:04


















  • $begingroup$
    Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
    $endgroup$
    – reuns
    Jan 11 at 15:04
















$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04




$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069787%2fintegral-of-laplace-transform%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069787%2fintegral-of-laplace-transform%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$