Integral of Laplace transform
$begingroup$
Consider the following theorem:
Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.
One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:
$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.
This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:
$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:
Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.
The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?
However, is my reasoning correct or should I settle with the original version of the theorem?
Furthermore, in the original version $sigmain mathbb{R}$, right?
Thanks in advance!
complex-analysis proof-verification laplace-transform
$endgroup$
add a comment |
$begingroup$
Consider the following theorem:
Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.
One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:
$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.
This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:
$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:
Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.
The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?
However, is my reasoning correct or should I settle with the original version of the theorem?
Furthermore, in the original version $sigmain mathbb{R}$, right?
Thanks in advance!
complex-analysis proof-verification laplace-transform
$endgroup$
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04
add a comment |
$begingroup$
Consider the following theorem:
Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.
One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:
$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.
This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:
$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:
Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.
The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?
However, is my reasoning correct or should I settle with the original version of the theorem?
Furthermore, in the original version $sigmain mathbb{R}$, right?
Thanks in advance!
complex-analysis proof-verification laplace-transform
$endgroup$
Consider the following theorem:
Let $u: mathbb{R}rightarrow mathbb{C}$, $uin T$, the set of Laplace-transformable functions, and $v in T$ as well, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(sigma)dsigma=mathcal{L}{v}(s)$ for $s in mathbb{R}$, $s>lambda_u$, the abscissa of convergence of $u$.
One has, given $s in mathbb{C}$ with $text{Re}(s)>lambda_u$:
$mathcal{L}{u}(s)=mathcal{L}{t$ $u(t)/t}(s)= ${derivative of Laplace transform}$ =-frac{d}{ds}mathcal{L}{u(t)/t}(s)=-frac{d}{ds}mathcal{L}{v}(s)$.
This shows that $-mathcal{L}{v}$ is a primitive for $mathcal{L}{u}$ and therefore, by the complex version of the fundamental theorem of calculus, and for a sufficiently smooth curve $Gamma: [a,b] rightarrow mathbb{C}$:
$int_{Gamma}mathcal{L}{u}(z)dz= mathcal{L}{v}(Gamma(a)) - mathcal{L}{v}(Gamma(b))$ where $Gamma(a), Gamma(b)$ must of course fall in the domain of $mathcal{L}{v}$. Choosing $Gamma(a)=s$ (the same $s$ as above), and letting $text{Re}({Gamma(b)})rightarrow + infty$ one concludes (with a small change in notation for the integral) the following complex version of the theorem above:
Let $u: mathbb{R}rightarrow mathbb{C}$, $u, vin T$, $v(t)=u(t)/t$. Then $int^{infty}_{s}mathcal{L}{u}(z)dz=mathcal{L}{v}(s)$ for $s in mathbb{C}$, $text{Re}(s)>lambda_u$.
The argument still needs a proof of the existence of the integral $int^{infty}_{s}mathcal{L}{u}(z)dz$, doesn't it?
However, is my reasoning correct or should I settle with the original version of the theorem?
Furthermore, in the original version $sigmain mathbb{R}$, right?
Thanks in advance!
complex-analysis proof-verification laplace-transform
complex-analysis proof-verification laplace-transform
asked Jan 11 at 12:35
LeonardoLeonardo
3449
3449
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04
add a comment |
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069787%2fintegral-of-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069787%2fintegral-of-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let $U_T(s)=int_0^Tu(t)e^{-st}dt,V_T(s)=int_0^T frac{u(t)}{t} e^{-st}dt$ assumed to converge absolutely (condition A). $U(s) =lim_{T toinfty} U_T(s),V(s) = lim_{T toinfty} V_T(s)$. If $lim_{T toinfty}U_T(s_0),lim_{T toinfty}V_T(s_0)$ converge (B) then integrating by parts $U(s_0+s) = int_0^infty U_t(s_0)s e^{-s t}dt,V(s_0+s) = int_0^infty U_t(s_0)(frac{se^{-st}}{t}+frac{e^{-st}}{t^2}) dt$ (no problem in $t=0$ by (A)) both converge absolutely for $Re(s) > 0$ and $V'(s_0+s)=-U(s_0+s)$. Since $lim_{Re(s)to infty}V(s)= 0$ then $V(s)=int_s^infty U(z)dz$
$endgroup$
– reuns
Jan 11 at 15:04