Coupled partial differential equations
$begingroup$
I'm having trouble solving these coupled partial differential equations:
$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$
with $A,c$ real constants.
What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.
ordinary-differential-equations pde partial-derivative
$endgroup$
add a comment |
$begingroup$
I'm having trouble solving these coupled partial differential equations:
$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$
with $A,c$ real constants.
What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.
ordinary-differential-equations pde partial-derivative
$endgroup$
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06
add a comment |
$begingroup$
I'm having trouble solving these coupled partial differential equations:
$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$
with $A,c$ real constants.
What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.
ordinary-differential-equations pde partial-derivative
$endgroup$
I'm having trouble solving these coupled partial differential equations:
$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$
with $A,c$ real constants.
What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.
ordinary-differential-equations pde partial-derivative
ordinary-differential-equations pde partial-derivative
asked Mar 11 '16 at 15:58
new guynew guy
382
382
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06
add a comment |
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$
$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$
$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$
Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$
For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.
$endgroup$
add a comment |
$begingroup$
Hint.
We have
$$
mathcal{D}_1 f = A p\
mathcal{D}_2 p = -A f
$$
then
$$
mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1693162%2fcoupled-partial-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$
$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$
$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$
Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$
For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.
$endgroup$
add a comment |
$begingroup$
$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$
$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$
$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$
Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$
For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.
$endgroup$
add a comment |
$begingroup$
$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$
$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$
$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$
Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$
For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.
$endgroup$
$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$
$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$
$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$
Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$
For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.
edited Apr 13 '17 at 12:20
Community♦
1
1
answered Mar 16 '16 at 8:49
JJacquelinJJacquelin
43.7k21853
43.7k21853
add a comment |
add a comment |
$begingroup$
Hint.
We have
$$
mathcal{D}_1 f = A p\
mathcal{D}_2 p = -A f
$$
then
$$
mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
$$
$endgroup$
add a comment |
$begingroup$
Hint.
We have
$$
mathcal{D}_1 f = A p\
mathcal{D}_2 p = -A f
$$
then
$$
mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
$$
$endgroup$
add a comment |
$begingroup$
Hint.
We have
$$
mathcal{D}_1 f = A p\
mathcal{D}_2 p = -A f
$$
then
$$
mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
$$
$endgroup$
Hint.
We have
$$
mathcal{D}_1 f = A p\
mathcal{D}_2 p = -A f
$$
then
$$
mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
$$
answered Jan 11 at 13:35
CesareoCesareo
8,6793516
8,6793516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1693162%2fcoupled-partial-differential-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03
$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05
$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06