Coupled partial differential equations












0












$begingroup$


I'm having trouble solving these coupled partial differential equations:




$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$

with $A,c$ real constants.




What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.










share|cite|improve this question









$endgroup$












  • $begingroup$
    I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:03












  • $begingroup$
    @Mattos What do you mean by rearranging $partial_x p$?
    $endgroup$
    – new guy
    Mar 11 '16 at 16:05










  • $begingroup$
    From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:06


















0












$begingroup$


I'm having trouble solving these coupled partial differential equations:




$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$

with $A,c$ real constants.




What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.










share|cite|improve this question









$endgroup$












  • $begingroup$
    I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:03












  • $begingroup$
    @Mattos What do you mean by rearranging $partial_x p$?
    $endgroup$
    – new guy
    Mar 11 '16 at 16:05










  • $begingroup$
    From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:06
















0












0








0





$begingroup$


I'm having trouble solving these coupled partial differential equations:




$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$

with $A,c$ real constants.




What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.










share|cite|improve this question









$endgroup$




I'm having trouble solving these coupled partial differential equations:




$$frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0,$$
$$frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0,$$

with $A,c$ real constants.




What is the "trick" to solve these? I haven't tried a lot since I wouldn't know where to start looking.







ordinary-differential-equations pde partial-derivative






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 11 '16 at 15:58









new guynew guy

382




382












  • $begingroup$
    I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:03












  • $begingroup$
    @Mattos What do you mean by rearranging $partial_x p$?
    $endgroup$
    – new guy
    Mar 11 '16 at 16:05










  • $begingroup$
    From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:06




















  • $begingroup$
    I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:03












  • $begingroup$
    @Mattos What do you mean by rearranging $partial_x p$?
    $endgroup$
    – new guy
    Mar 11 '16 at 16:05










  • $begingroup$
    From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
    $endgroup$
    – Mattos
    Mar 11 '16 at 16:06


















$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03






$begingroup$
I suppose you could take $partial_{x}$ (and $partial_{t}$) of the first equation, rearrange for $partial_{x} p$ and $partial_{t} p$, then substitute those results into your second equation which should give you everything in $f$.
$endgroup$
– Mattos
Mar 11 '16 at 16:03














$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05




$begingroup$
@Mattos What do you mean by rearranging $partial_x p$?
$endgroup$
– new guy
Mar 11 '16 at 16:05












$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06






$begingroup$
From the first equation $$partial_{x} p = frac{1}{A} partial_{x} bigg( partial_{t} f - c partial_{x} f bigg)$$ You can get something similar for $partial_{t} p$.
$endgroup$
– Mattos
Mar 11 '16 at 16:06












2 Answers
2






active

oldest

votes


















0












$begingroup$

$$begin{cases}
frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
end{cases}$$
Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
begin{cases}
frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
end{cases}$



$$begin{cases}
f_T-f_X-p=0 \
p_T+p_X+f=0
end{cases}$$
$p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$



$$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$



Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$



For example of solving see : Finding the general solution of a second order PDE
This method leads to the integral form of solution :
$$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
$c(s)$ and $alpha(s)$ are arbitrary real or complex functions.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Hint.



    We have



    $$
    mathcal{D}_1 f = A p\
    mathcal{D}_2 p = -A f
    $$



    then



    $$
    mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
    mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
    $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1693162%2fcoupled-partial-differential-equations%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      $$begin{cases}
      frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
      frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
      end{cases}$$
      Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
      begin{cases}
      frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
      frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
      end{cases}$



      $$begin{cases}
      f_T-f_X-p=0 \
      p_T+p_X+f=0
      end{cases}$$
      $p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$



      $$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
      Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$



      Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$



      For example of solving see : Finding the general solution of a second order PDE
      This method leads to the integral form of solution :
      $$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
      $c(s)$ and $alpha(s)$ are arbitrary real or complex functions.






      share|cite|improve this answer











      $endgroup$


















        0












        $begingroup$

        $$begin{cases}
        frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
        frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
        end{cases}$$
        Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
        begin{cases}
        frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
        frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
        end{cases}$



        $$begin{cases}
        f_T-f_X-p=0 \
        p_T+p_X+f=0
        end{cases}$$
        $p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$



        $$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
        Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$



        Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$



        For example of solving see : Finding the general solution of a second order PDE
        This method leads to the integral form of solution :
        $$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
        $c(s)$ and $alpha(s)$ are arbitrary real or complex functions.






        share|cite|improve this answer











        $endgroup$
















          0












          0








          0





          $begingroup$

          $$begin{cases}
          frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
          frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
          end{cases}$$
          Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
          begin{cases}
          frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
          frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
          end{cases}$



          $$begin{cases}
          f_T-f_X-p=0 \
          p_T+p_X+f=0
          end{cases}$$
          $p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$



          $$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
          Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$



          Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$



          For example of solving see : Finding the general solution of a second order PDE
          This method leads to the integral form of solution :
          $$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
          $c(s)$ and $alpha(s)$ are arbitrary real or complex functions.






          share|cite|improve this answer











          $endgroup$



          $$begin{cases}
          frac{partial}{partial t}f(x,t)-cfrac{partial}{partial x}f(x,t)-Ap(x,t)=0 \
          frac{partial}{partial t}p(x,t)+cfrac{partial}{partial x}p(x,t)+Af(x,t)=0
          end{cases}$$
          Regularised form with $begin{cases} T=At \ X=frac{A}{c}x end{cases} quadtoquad
          begin{cases}
          frac{partial}{partial T}f(X,T)-frac{partial}{partial X}f(X,T)-p(X,T)=0 \
          frac{partial}{partial T}p(X,T)+frac{partial}{partial X}p(X,T)+f(X,T)=0
          end{cases}$



          $$begin{cases}
          f_T-f_X-p=0 \
          p_T+p_X+f=0
          end{cases}$$
          $p=f_T-f_X quadtoquad (f_{TT}-f_{XT})+(f_{XT}-f_{XX})+f=0$



          $$frac{partial^2 f}{partial T^2}-frac{partial^2f}{partial X^2}+f(X,T)=0$$
          Solving this hyperbolic PDE leads to $f(X,T)=fleft(At:,:frac{A}{c}x right)$



          Then $quad p(X,T)=frac{partial f}{partial T}-frac{partial f}{partial X}=pleft(At:,:frac{A}{c}x right)$



          For example of solving see : Finding the general solution of a second order PDE
          This method leads to the integral form of solution :
          $$f(X,T)=int c(s)e^{sqrt{alpha(s)-frac{1}{2}}:X +sqrt{alpha(s)+frac{1}{2}} :T } ds$$
          $c(s)$ and $alpha(s)$ are arbitrary real or complex functions.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 13 '17 at 12:20









          Community

          1




          1










          answered Mar 16 '16 at 8:49









          JJacquelinJJacquelin

          43.7k21853




          43.7k21853























              0












              $begingroup$

              Hint.



              We have



              $$
              mathcal{D}_1 f = A p\
              mathcal{D}_2 p = -A f
              $$



              then



              $$
              mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
              mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
              $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Hint.



                We have



                $$
                mathcal{D}_1 f = A p\
                mathcal{D}_2 p = -A f
                $$



                then



                $$
                mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
                mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
                $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint.



                  We have



                  $$
                  mathcal{D}_1 f = A p\
                  mathcal{D}_2 p = -A f
                  $$



                  then



                  $$
                  mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
                  mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Hint.



                  We have



                  $$
                  mathcal{D}_1 f = A p\
                  mathcal{D}_2 p = -A f
                  $$



                  then



                  $$
                  mathcal{D}_2mathcal{D}_1 f = Amathcal{D}_2 p = -A^2 f\
                  mathcal{D}_1mathcal{D}_2 p = -A mathcal{D}_1f = -A^2p
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 11 at 13:35









                  CesareoCesareo

                  8,6793516




                  8,6793516






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1693162%2fcoupled-partial-differential-equations%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$