Using the Cauchy Integral Theorem for Derivatives to evaluate an integral












0












$begingroup$


I ran into this question which hints me to use Cauchy's Integral Theorem for Derivatives, however I don't seem to be able to fit this integral into the form of the Integral Formula



$$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz$$ I tried using the fact that $displaystyle int_gamma f(z)dz=int_a^b f(gamma(t))gamma'(t)dt$ for $gamma(t)$ where $t in [a, b]$. But got nowhere. Is there a way I can transform the given integral into the form in which I can use the Integral Formula as stated below?



$$f^{(k)}(w)=frac{k!}{2pi i}int_gamma frac{f(z)}{(z-w)^{k+1}}dz$$ where $f^{(k)}(w)$ is the $k^{th}$ derivative of $f$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I ran into this question which hints me to use Cauchy's Integral Theorem for Derivatives, however I don't seem to be able to fit this integral into the form of the Integral Formula



    $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz$$ I tried using the fact that $displaystyle int_gamma f(z)dz=int_a^b f(gamma(t))gamma'(t)dt$ for $gamma(t)$ where $t in [a, b]$. But got nowhere. Is there a way I can transform the given integral into the form in which I can use the Integral Formula as stated below?



    $$f^{(k)}(w)=frac{k!}{2pi i}int_gamma frac{f(z)}{(z-w)^{k+1}}dz$$ where $f^{(k)}(w)$ is the $k^{th}$ derivative of $f$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I ran into this question which hints me to use Cauchy's Integral Theorem for Derivatives, however I don't seem to be able to fit this integral into the form of the Integral Formula



      $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz$$ I tried using the fact that $displaystyle int_gamma f(z)dz=int_a^b f(gamma(t))gamma'(t)dt$ for $gamma(t)$ where $t in [a, b]$. But got nowhere. Is there a way I can transform the given integral into the form in which I can use the Integral Formula as stated below?



      $$f^{(k)}(w)=frac{k!}{2pi i}int_gamma frac{f(z)}{(z-w)^{k+1}}dz$$ where $f^{(k)}(w)$ is the $k^{th}$ derivative of $f$










      share|cite|improve this question











      $endgroup$




      I ran into this question which hints me to use Cauchy's Integral Theorem for Derivatives, however I don't seem to be able to fit this integral into the form of the Integral Formula



      $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz$$ I tried using the fact that $displaystyle int_gamma f(z)dz=int_a^b f(gamma(t))gamma'(t)dt$ for $gamma(t)$ where $t in [a, b]$. But got nowhere. Is there a way I can transform the given integral into the form in which I can use the Integral Formula as stated below?



      $$f^{(k)}(w)=frac{k!}{2pi i}int_gamma frac{f(z)}{(z-w)^{k+1}}dz$$ where $f^{(k)}(w)$ is the $k^{th}$ derivative of $f$







      complex-analysis complex-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 12:43







      Paras Khosla

















      asked Nov 22 '18 at 16:49









      Paras KhoslaParas Khosla

      386212




      386212






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          By Cauchy's integral theorem,$$oint_{lvert zrvert=2}frac{cos z}{z(z^2+8)},mathrm dz=oint_{lvert zrvert=2}frac{frac{cos z}{z^2+8}}z,mathrm dz=2pi itimesfrac{cos0}{0^2+8}=frac{pi i}4.$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            The function $displaystyle f(z)=frac{cos(z)}{z^2+8}$ is analytic on $|z|=2$ then using Cauchy's Integral Theorem
            $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz=int_{|z|=2} dfrac{frac{cos(z)}{z^2+8}}{z}dz=2pi itimes f(0)=dfrac{pi i}{4}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009345%2fusing-the-cauchy-integral-theorem-for-derivatives-to-evaluate-an-integral%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              By Cauchy's integral theorem,$$oint_{lvert zrvert=2}frac{cos z}{z(z^2+8)},mathrm dz=oint_{lvert zrvert=2}frac{frac{cos z}{z^2+8}}z,mathrm dz=2pi itimesfrac{cos0}{0^2+8}=frac{pi i}4.$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                By Cauchy's integral theorem,$$oint_{lvert zrvert=2}frac{cos z}{z(z^2+8)},mathrm dz=oint_{lvert zrvert=2}frac{frac{cos z}{z^2+8}}z,mathrm dz=2pi itimesfrac{cos0}{0^2+8}=frac{pi i}4.$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  By Cauchy's integral theorem,$$oint_{lvert zrvert=2}frac{cos z}{z(z^2+8)},mathrm dz=oint_{lvert zrvert=2}frac{frac{cos z}{z^2+8}}z,mathrm dz=2pi itimesfrac{cos0}{0^2+8}=frac{pi i}4.$$






                  share|cite|improve this answer









                  $endgroup$



                  By Cauchy's integral theorem,$$oint_{lvert zrvert=2}frac{cos z}{z(z^2+8)},mathrm dz=oint_{lvert zrvert=2}frac{frac{cos z}{z^2+8}}z,mathrm dz=2pi itimesfrac{cos0}{0^2+8}=frac{pi i}4.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 22 '18 at 16:52









                  José Carlos SantosJosé Carlos Santos

                  160k22126232




                  160k22126232























                      1












                      $begingroup$

                      The function $displaystyle f(z)=frac{cos(z)}{z^2+8}$ is analytic on $|z|=2$ then using Cauchy's Integral Theorem
                      $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz=int_{|z|=2} dfrac{frac{cos(z)}{z^2+8}}{z}dz=2pi itimes f(0)=dfrac{pi i}{4}$$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        The function $displaystyle f(z)=frac{cos(z)}{z^2+8}$ is analytic on $|z|=2$ then using Cauchy's Integral Theorem
                        $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz=int_{|z|=2} dfrac{frac{cos(z)}{z^2+8}}{z}dz=2pi itimes f(0)=dfrac{pi i}{4}$$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          The function $displaystyle f(z)=frac{cos(z)}{z^2+8}$ is analytic on $|z|=2$ then using Cauchy's Integral Theorem
                          $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz=int_{|z|=2} dfrac{frac{cos(z)}{z^2+8}}{z}dz=2pi itimes f(0)=dfrac{pi i}{4}$$






                          share|cite|improve this answer









                          $endgroup$



                          The function $displaystyle f(z)=frac{cos(z)}{z^2+8}$ is analytic on $|z|=2$ then using Cauchy's Integral Theorem
                          $$displaystyle int_{|z|=2} frac{cos(z)}{z(z^2+8)}dz=int_{|z|=2} dfrac{frac{cos(z)}{z^2+8}}{z}dz=2pi itimes f(0)=dfrac{pi i}{4}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 22 '18 at 16:53









                          NosratiNosrati

                          26.5k62354




                          26.5k62354






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009345%2fusing-the-cauchy-integral-theorem-for-derivatives-to-evaluate-an-integral%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]