Mean vector and covariance matrix
$begingroup$
I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
Given:
$$begin{equation}
p_underline x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2_1+x^2_2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
Find the mean and covariance matrix of the random vector of:
$$ underline y=begin{bmatrix}
1 & -1 \
0 & 2 \
end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
$$
Marginal distribution, mean and variance is already determined.
Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
Thanx
matrices probability-theory covariance means
$endgroup$
add a comment |
$begingroup$
I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
Given:
$$begin{equation}
p_underline x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2_1+x^2_2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
Find the mean and covariance matrix of the random vector of:
$$ underline y=begin{bmatrix}
1 & -1 \
0 & 2 \
end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
$$
Marginal distribution, mean and variance is already determined.
Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
Thanx
matrices probability-theory covariance means
$endgroup$
add a comment |
$begingroup$
I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
Given:
$$begin{equation}
p_underline x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2_1+x^2_2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
Find the mean and covariance matrix of the random vector of:
$$ underline y=begin{bmatrix}
1 & -1 \
0 & 2 \
end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
$$
Marginal distribution, mean and variance is already determined.
Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
Thanx
matrices probability-theory covariance means
$endgroup$
I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
Given:
$$begin{equation}
p_underline x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2_1+x^2_2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$
Find the mean and covariance matrix of the random vector of:
$$ underline y=begin{bmatrix}
1 & -1 \
0 & 2 \
end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
$$
Marginal distribution, mean and variance is already determined.
Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
Thanx
matrices probability-theory covariance means
matrices probability-theory covariance means
asked Jan 11 at 13:09
Hillbilly JoeHillbilly Joe
164
164
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write
$$underline{y} = begin{bmatrix}
y_1 \
y_2
end{bmatrix}, underline{x} = begin{bmatrix}
x_1 \
x_2
end{bmatrix}text{.}$$
Then we have
$$begin{bmatrix}
y_1 \
y_2
end{bmatrix} = begin{bmatrix}
1 & -1 \
0 & 2
end{bmatrix}begin{bmatrix}
x_1 \
x_2
end{bmatrix} + begin{bmatrix}
2 \
3
end{bmatrix} = begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
So, what this problem boils down to is finding the mean and covariance matrix of
$$begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
The expected value is simply
$$mathbb{E}left[begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix} right] = begin{bmatrix}
mathbb{E}[x_1 - x_2 + 2]\
mathbb{E}[2x_2+3]
end{bmatrix}$$
and the covariance matrix is
$$text{Cov}left(begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}right) = begin{bmatrix}
text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
end{bmatrix}text{.}$$
I will let you handle it from here.
$endgroup$
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069807%2fmean-vector-and-covariance-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write
$$underline{y} = begin{bmatrix}
y_1 \
y_2
end{bmatrix}, underline{x} = begin{bmatrix}
x_1 \
x_2
end{bmatrix}text{.}$$
Then we have
$$begin{bmatrix}
y_1 \
y_2
end{bmatrix} = begin{bmatrix}
1 & -1 \
0 & 2
end{bmatrix}begin{bmatrix}
x_1 \
x_2
end{bmatrix} + begin{bmatrix}
2 \
3
end{bmatrix} = begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
So, what this problem boils down to is finding the mean and covariance matrix of
$$begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
The expected value is simply
$$mathbb{E}left[begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix} right] = begin{bmatrix}
mathbb{E}[x_1 - x_2 + 2]\
mathbb{E}[2x_2+3]
end{bmatrix}$$
and the covariance matrix is
$$text{Cov}left(begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}right) = begin{bmatrix}
text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
end{bmatrix}text{.}$$
I will let you handle it from here.
$endgroup$
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
add a comment |
$begingroup$
Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write
$$underline{y} = begin{bmatrix}
y_1 \
y_2
end{bmatrix}, underline{x} = begin{bmatrix}
x_1 \
x_2
end{bmatrix}text{.}$$
Then we have
$$begin{bmatrix}
y_1 \
y_2
end{bmatrix} = begin{bmatrix}
1 & -1 \
0 & 2
end{bmatrix}begin{bmatrix}
x_1 \
x_2
end{bmatrix} + begin{bmatrix}
2 \
3
end{bmatrix} = begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
So, what this problem boils down to is finding the mean and covariance matrix of
$$begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
The expected value is simply
$$mathbb{E}left[begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix} right] = begin{bmatrix}
mathbb{E}[x_1 - x_2 + 2]\
mathbb{E}[2x_2+3]
end{bmatrix}$$
and the covariance matrix is
$$text{Cov}left(begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}right) = begin{bmatrix}
text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
end{bmatrix}text{.}$$
I will let you handle it from here.
$endgroup$
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
add a comment |
$begingroup$
Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write
$$underline{y} = begin{bmatrix}
y_1 \
y_2
end{bmatrix}, underline{x} = begin{bmatrix}
x_1 \
x_2
end{bmatrix}text{.}$$
Then we have
$$begin{bmatrix}
y_1 \
y_2
end{bmatrix} = begin{bmatrix}
1 & -1 \
0 & 2
end{bmatrix}begin{bmatrix}
x_1 \
x_2
end{bmatrix} + begin{bmatrix}
2 \
3
end{bmatrix} = begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
So, what this problem boils down to is finding the mean and covariance matrix of
$$begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
The expected value is simply
$$mathbb{E}left[begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix} right] = begin{bmatrix}
mathbb{E}[x_1 - x_2 + 2]\
mathbb{E}[2x_2+3]
end{bmatrix}$$
and the covariance matrix is
$$text{Cov}left(begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}right) = begin{bmatrix}
text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
end{bmatrix}text{.}$$
I will let you handle it from here.
$endgroup$
Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write
$$underline{y} = begin{bmatrix}
y_1 \
y_2
end{bmatrix}, underline{x} = begin{bmatrix}
x_1 \
x_2
end{bmatrix}text{.}$$
Then we have
$$begin{bmatrix}
y_1 \
y_2
end{bmatrix} = begin{bmatrix}
1 & -1 \
0 & 2
end{bmatrix}begin{bmatrix}
x_1 \
x_2
end{bmatrix} + begin{bmatrix}
2 \
3
end{bmatrix} = begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
So, what this problem boils down to is finding the mean and covariance matrix of
$$begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}text{.}$$
The expected value is simply
$$mathbb{E}left[begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix} right] = begin{bmatrix}
mathbb{E}[x_1 - x_2 + 2]\
mathbb{E}[2x_2+3]
end{bmatrix}$$
and the covariance matrix is
$$text{Cov}left(begin{bmatrix}
x_1 - x_2 + 2\
2x_2+3
end{bmatrix}right) = begin{bmatrix}
text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
end{bmatrix}text{.}$$
I will let you handle it from here.
answered Jan 11 at 13:24
ClarinetistClarinetist
11k42778
11k42778
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
add a comment |
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
$begingroup$
Thank you for your help
$endgroup$
– Hillbilly Joe
Jan 11 at 13:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069807%2fmean-vector-and-covariance-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown