Mean vector and covariance matrix












0












$begingroup$


I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
Given:
$$begin{equation}
p_underline x(x)=left{
begin{array}{@{}ll@{}}
frac1pi, & text{if} x^2_1+x^2_2 < 1 \
0, & text{otherwise}
end{array}right.
end{equation} $$

Find the mean and covariance matrix of the random vector of:
$$ underline y=begin{bmatrix}
1 & -1 \
0 & 2 \
end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
$$

Marginal distribution, mean and variance is already determined.
Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
Thanx










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
    Given:
    $$begin{equation}
    p_underline x(x)=left{
    begin{array}{@{}ll@{}}
    frac1pi, & text{if} x^2_1+x^2_2 < 1 \
    0, & text{otherwise}
    end{array}right.
    end{equation} $$

    Find the mean and covariance matrix of the random vector of:
    $$ underline y=begin{bmatrix}
    1 & -1 \
    0 & 2 \
    end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
    $$

    Marginal distribution, mean and variance is already determined.
    Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
    Thanx










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
      Given:
      $$begin{equation}
      p_underline x(x)=left{
      begin{array}{@{}ll@{}}
      frac1pi, & text{if} x^2_1+x^2_2 < 1 \
      0, & text{otherwise}
      end{array}right.
      end{equation} $$

      Find the mean and covariance matrix of the random vector of:
      $$ underline y=begin{bmatrix}
      1 & -1 \
      0 & 2 \
      end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
      $$

      Marginal distribution, mean and variance is already determined.
      Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
      Thanx










      share|cite|improve this question









      $endgroup$




      I am given a home work for one subject, but my probability theory course is just started, so I dont have enough information. Could someone help me with that?
      Given:
      $$begin{equation}
      p_underline x(x)=left{
      begin{array}{@{}ll@{}}
      frac1pi, & text{if} x^2_1+x^2_2 < 1 \
      0, & text{otherwise}
      end{array}right.
      end{equation} $$

      Find the mean and covariance matrix of the random vector of:
      $$ underline y=begin{bmatrix}
      1 & -1 \
      0 & 2 \
      end{bmatrix}underline x + begin{bmatrix} 2 \ 3 \ end{bmatrix}
      $$

      Marginal distribution, mean and variance is already determined.
      Help me please with doing mean and covariance matrix. If this will be explained and possibly given a link to some resource it would be quite helpful for me.
      Thanx







      matrices probability-theory covariance means






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 11 at 13:09









      Hillbilly JoeHillbilly Joe

      164




      164






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write



          $$underline{y} = begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix}, underline{x} = begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix}text{.}$$

          Then we have
          $$begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix} = begin{bmatrix}
          1 & -1 \
          0 & 2
          end{bmatrix}begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix} + begin{bmatrix}
          2 \
          3
          end{bmatrix} = begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          So, what this problem boils down to is finding the mean and covariance matrix of
          $$begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          The expected value is simply
          $$mathbb{E}left[begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix} right] = begin{bmatrix}
          mathbb{E}[x_1 - x_2 + 2]\
          mathbb{E}[2x_2+3]
          end{bmatrix}$$

          and the covariance matrix is
          $$text{Cov}left(begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}right) = begin{bmatrix}
          text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
          text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
          end{bmatrix}text{.}$$

          I will let you handle it from here.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your help
            $endgroup$
            – Hillbilly Joe
            Jan 11 at 13:29











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069807%2fmean-vector-and-covariance-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write



          $$underline{y} = begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix}, underline{x} = begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix}text{.}$$

          Then we have
          $$begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix} = begin{bmatrix}
          1 & -1 \
          0 & 2
          end{bmatrix}begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix} + begin{bmatrix}
          2 \
          3
          end{bmatrix} = begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          So, what this problem boils down to is finding the mean and covariance matrix of
          $$begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          The expected value is simply
          $$mathbb{E}left[begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix} right] = begin{bmatrix}
          mathbb{E}[x_1 - x_2 + 2]\
          mathbb{E}[2x_2+3]
          end{bmatrix}$$

          and the covariance matrix is
          $$text{Cov}left(begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}right) = begin{bmatrix}
          text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
          text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
          end{bmatrix}text{.}$$

          I will let you handle it from here.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your help
            $endgroup$
            – Hillbilly Joe
            Jan 11 at 13:29
















          0












          $begingroup$

          Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write



          $$underline{y} = begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix}, underline{x} = begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix}text{.}$$

          Then we have
          $$begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix} = begin{bmatrix}
          1 & -1 \
          0 & 2
          end{bmatrix}begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix} + begin{bmatrix}
          2 \
          3
          end{bmatrix} = begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          So, what this problem boils down to is finding the mean and covariance matrix of
          $$begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          The expected value is simply
          $$mathbb{E}left[begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix} right] = begin{bmatrix}
          mathbb{E}[x_1 - x_2 + 2]\
          mathbb{E}[2x_2+3]
          end{bmatrix}$$

          and the covariance matrix is
          $$text{Cov}left(begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}right) = begin{bmatrix}
          text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
          text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
          end{bmatrix}text{.}$$

          I will let you handle it from here.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your help
            $endgroup$
            – Hillbilly Joe
            Jan 11 at 13:29














          0












          0








          0





          $begingroup$

          Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write



          $$underline{y} = begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix}, underline{x} = begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix}text{.}$$

          Then we have
          $$begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix} = begin{bmatrix}
          1 & -1 \
          0 & 2
          end{bmatrix}begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix} + begin{bmatrix}
          2 \
          3
          end{bmatrix} = begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          So, what this problem boils down to is finding the mean and covariance matrix of
          $$begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          The expected value is simply
          $$mathbb{E}left[begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix} right] = begin{bmatrix}
          mathbb{E}[x_1 - x_2 + 2]\
          mathbb{E}[2x_2+3]
          end{bmatrix}$$

          and the covariance matrix is
          $$text{Cov}left(begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}right) = begin{bmatrix}
          text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
          text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
          end{bmatrix}text{.}$$

          I will let you handle it from here.






          share|cite|improve this answer









          $endgroup$



          Hint: not a complete solution, since you've already done most of the work, given what you've stated. Write



          $$underline{y} = begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix}, underline{x} = begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix}text{.}$$

          Then we have
          $$begin{bmatrix}
          y_1 \
          y_2
          end{bmatrix} = begin{bmatrix}
          1 & -1 \
          0 & 2
          end{bmatrix}begin{bmatrix}
          x_1 \
          x_2
          end{bmatrix} + begin{bmatrix}
          2 \
          3
          end{bmatrix} = begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          So, what this problem boils down to is finding the mean and covariance matrix of
          $$begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}text{.}$$

          The expected value is simply
          $$mathbb{E}left[begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix} right] = begin{bmatrix}
          mathbb{E}[x_1 - x_2 + 2]\
          mathbb{E}[2x_2+3]
          end{bmatrix}$$

          and the covariance matrix is
          $$text{Cov}left(begin{bmatrix}
          x_1 - x_2 + 2\
          2x_2+3
          end{bmatrix}right) = begin{bmatrix}
          text{Cov}left(x_1 - x_2 + 2, x_1 - x_2 + 2right) & text{Cov}left(x_1 - x_2 + 2, 2x_2+3right) \
          text{Cov}left(2x_2+3, x_1 - x_2 + 2right) & text{Cov}left(2x_2+3, 2x_2+3right)
          end{bmatrix}text{.}$$

          I will let you handle it from here.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 13:24









          ClarinetistClarinetist

          11k42778




          11k42778












          • $begingroup$
            Thank you for your help
            $endgroup$
            – Hillbilly Joe
            Jan 11 at 13:29


















          • $begingroup$
            Thank you for your help
            $endgroup$
            – Hillbilly Joe
            Jan 11 at 13:29
















          $begingroup$
          Thank you for your help
          $endgroup$
          – Hillbilly Joe
          Jan 11 at 13:29




          $begingroup$
          Thank you for your help
          $endgroup$
          – Hillbilly Joe
          Jan 11 at 13:29


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069807%2fmean-vector-and-covariance-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]