Proving that a certain function is an integral of motion for a Hamiltonian
$begingroup$
Let $H=q_1p_1-q_2p_2-aq_1^2+bq_2^2$ (with $a,b$ constant) be a Hamiltionian.
Show that $G=dfrac{p_1-aq_1}{q_2}$ is a first integral (integral of motion) of this system.
According to the proposed solution, I need to show that the Poisson Bracket $[G,H] = 0$.
I used the following method, is this valid?
Other method?
The Hamiltionian equations are:
$$dot q_1 = dfrac{partial H}{partial p_1} = q_1 qquadqquad dot q_2 = -p_2$$
$$dot p_1 = -dfrac{partial H}{partial q_1} = -p_1+2aq_1 qquadqquad dot p_2 = q_2-2bq_2$$
Then, if $G$ is a integral of motion the total time derivative must equal zero (true?)
So:
$$begin{align}
dfrac{operatorname d G}{operatorname d t} & = dfrac{1}{q_2^2}left[ q_2(dot p_1-adot q_1) - dot q_2(p_1-aq_1)right]\
&= ldots text{(substitution using the Hamiltionian equations)} \
&= 0
end{align}$$
solution-verification classical-mechanics
$endgroup$
add a comment |
$begingroup$
Let $H=q_1p_1-q_2p_2-aq_1^2+bq_2^2$ (with $a,b$ constant) be a Hamiltionian.
Show that $G=dfrac{p_1-aq_1}{q_2}$ is a first integral (integral of motion) of this system.
According to the proposed solution, I need to show that the Poisson Bracket $[G,H] = 0$.
I used the following method, is this valid?
Other method?
The Hamiltionian equations are:
$$dot q_1 = dfrac{partial H}{partial p_1} = q_1 qquadqquad dot q_2 = -p_2$$
$$dot p_1 = -dfrac{partial H}{partial q_1} = -p_1+2aq_1 qquadqquad dot p_2 = q_2-2bq_2$$
Then, if $G$ is a integral of motion the total time derivative must equal zero (true?)
So:
$$begin{align}
dfrac{operatorname d G}{operatorname d t} & = dfrac{1}{q_2^2}left[ q_2(dot p_1-adot q_1) - dot q_2(p_1-aq_1)right]\
&= ldots text{(substitution using the Hamiltionian equations)} \
&= 0
end{align}$$
solution-verification classical-mechanics
$endgroup$
add a comment |
$begingroup$
Let $H=q_1p_1-q_2p_2-aq_1^2+bq_2^2$ (with $a,b$ constant) be a Hamiltionian.
Show that $G=dfrac{p_1-aq_1}{q_2}$ is a first integral (integral of motion) of this system.
According to the proposed solution, I need to show that the Poisson Bracket $[G,H] = 0$.
I used the following method, is this valid?
Other method?
The Hamiltionian equations are:
$$dot q_1 = dfrac{partial H}{partial p_1} = q_1 qquadqquad dot q_2 = -p_2$$
$$dot p_1 = -dfrac{partial H}{partial q_1} = -p_1+2aq_1 qquadqquad dot p_2 = q_2-2bq_2$$
Then, if $G$ is a integral of motion the total time derivative must equal zero (true?)
So:
$$begin{align}
dfrac{operatorname d G}{operatorname d t} & = dfrac{1}{q_2^2}left[ q_2(dot p_1-adot q_1) - dot q_2(p_1-aq_1)right]\
&= ldots text{(substitution using the Hamiltionian equations)} \
&= 0
end{align}$$
solution-verification classical-mechanics
$endgroup$
Let $H=q_1p_1-q_2p_2-aq_1^2+bq_2^2$ (with $a,b$ constant) be a Hamiltionian.
Show that $G=dfrac{p_1-aq_1}{q_2}$ is a first integral (integral of motion) of this system.
According to the proposed solution, I need to show that the Poisson Bracket $[G,H] = 0$.
I used the following method, is this valid?
Other method?
The Hamiltionian equations are:
$$dot q_1 = dfrac{partial H}{partial p_1} = q_1 qquadqquad dot q_2 = -p_2$$
$$dot p_1 = -dfrac{partial H}{partial q_1} = -p_1+2aq_1 qquadqquad dot p_2 = q_2-2bq_2$$
Then, if $G$ is a integral of motion the total time derivative must equal zero (true?)
So:
$$begin{align}
dfrac{operatorname d G}{operatorname d t} & = dfrac{1}{q_2^2}left[ q_2(dot p_1-adot q_1) - dot q_2(p_1-aq_1)right]\
&= ldots text{(substitution using the Hamiltionian equations)} \
&= 0
end{align}$$
solution-verification classical-mechanics
solution-verification classical-mechanics
asked May 15 '15 at 14:45
dietervdfdietervdf
2,6761327
2,6761327
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your solution method and the proposed one are equivalent. Integrals of motion are those functions whose total time derivative is zero (by definition), and the total time derivative of a function $G$ dependent only on coordinates is equal to the Poisson bracket: $$begin{align*}dot{G} &= frac{dG}{dt}\ & = frac{partial G}{partial q_1}dot{q_1} + frac{partial G}{partial q_2}dot{q_2} + frac{partial G}{partial p_1}dot{p_1} + frac{partial G}{partial p_2}dot{p_2}\ &= frac{partial G}{partial q_1}frac{partial H}{partial p_1} + frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_1}frac{partial H}{partial q_1} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}\ &=bigg(frac{partial G}{partial q_1}frac{partial H}{partial p_1} - frac{partial G}{partial p_1}frac{partial H}{partial q_1}bigg) + bigg(frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}bigg) \& = {G,H}end{align*}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283580%2fproving-that-a-certain-function-is-an-integral-of-motion-for-a-hamiltonian%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your solution method and the proposed one are equivalent. Integrals of motion are those functions whose total time derivative is zero (by definition), and the total time derivative of a function $G$ dependent only on coordinates is equal to the Poisson bracket: $$begin{align*}dot{G} &= frac{dG}{dt}\ & = frac{partial G}{partial q_1}dot{q_1} + frac{partial G}{partial q_2}dot{q_2} + frac{partial G}{partial p_1}dot{p_1} + frac{partial G}{partial p_2}dot{p_2}\ &= frac{partial G}{partial q_1}frac{partial H}{partial p_1} + frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_1}frac{partial H}{partial q_1} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}\ &=bigg(frac{partial G}{partial q_1}frac{partial H}{partial p_1} - frac{partial G}{partial p_1}frac{partial H}{partial q_1}bigg) + bigg(frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}bigg) \& = {G,H}end{align*}$$
$endgroup$
add a comment |
$begingroup$
Your solution method and the proposed one are equivalent. Integrals of motion are those functions whose total time derivative is zero (by definition), and the total time derivative of a function $G$ dependent only on coordinates is equal to the Poisson bracket: $$begin{align*}dot{G} &= frac{dG}{dt}\ & = frac{partial G}{partial q_1}dot{q_1} + frac{partial G}{partial q_2}dot{q_2} + frac{partial G}{partial p_1}dot{p_1} + frac{partial G}{partial p_2}dot{p_2}\ &= frac{partial G}{partial q_1}frac{partial H}{partial p_1} + frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_1}frac{partial H}{partial q_1} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}\ &=bigg(frac{partial G}{partial q_1}frac{partial H}{partial p_1} - frac{partial G}{partial p_1}frac{partial H}{partial q_1}bigg) + bigg(frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}bigg) \& = {G,H}end{align*}$$
$endgroup$
add a comment |
$begingroup$
Your solution method and the proposed one are equivalent. Integrals of motion are those functions whose total time derivative is zero (by definition), and the total time derivative of a function $G$ dependent only on coordinates is equal to the Poisson bracket: $$begin{align*}dot{G} &= frac{dG}{dt}\ & = frac{partial G}{partial q_1}dot{q_1} + frac{partial G}{partial q_2}dot{q_2} + frac{partial G}{partial p_1}dot{p_1} + frac{partial G}{partial p_2}dot{p_2}\ &= frac{partial G}{partial q_1}frac{partial H}{partial p_1} + frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_1}frac{partial H}{partial q_1} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}\ &=bigg(frac{partial G}{partial q_1}frac{partial H}{partial p_1} - frac{partial G}{partial p_1}frac{partial H}{partial q_1}bigg) + bigg(frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}bigg) \& = {G,H}end{align*}$$
$endgroup$
Your solution method and the proposed one are equivalent. Integrals of motion are those functions whose total time derivative is zero (by definition), and the total time derivative of a function $G$ dependent only on coordinates is equal to the Poisson bracket: $$begin{align*}dot{G} &= frac{dG}{dt}\ & = frac{partial G}{partial q_1}dot{q_1} + frac{partial G}{partial q_2}dot{q_2} + frac{partial G}{partial p_1}dot{p_1} + frac{partial G}{partial p_2}dot{p_2}\ &= frac{partial G}{partial q_1}frac{partial H}{partial p_1} + frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_1}frac{partial H}{partial q_1} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}\ &=bigg(frac{partial G}{partial q_1}frac{partial H}{partial p_1} - frac{partial G}{partial p_1}frac{partial H}{partial q_1}bigg) + bigg(frac{partial G}{partial q_2}frac{partial H}{partial p_2} - frac{partial G}{partial p_2}frac{partial H}{partial q_2}bigg) \& = {G,H}end{align*}$$
answered Jan 22 at 20:03
Ricardo BuringRicardo Buring
1,4711334
1,4711334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283580%2fproving-that-a-certain-function-is-an-integral-of-motion-for-a-hamiltonian%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown