Fourier transform to solve $int_{- infty}^{+infty}frac{sin^3(x)}{x^3},dx$












0












$begingroup$


I think that I am almost there:



giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.



I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$



I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$



knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$



We then get :



$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$



then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$



but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$



Where is the problem?



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
    $endgroup$
    – J.G.
    Jan 12 at 22:50
















0












$begingroup$


I think that I am almost there:



giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.



I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$



I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$



knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$



We then get :



$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$



then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$



but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$



Where is the problem?



Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
    $endgroup$
    – J.G.
    Jan 12 at 22:50














0












0








0





$begingroup$


I think that I am almost there:



giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.



I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$



I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$



knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$



We then get :



$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$



then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$



but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$



Where is the problem?



Thanks










share|cite|improve this question











$endgroup$




I think that I am almost there:



giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.



I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$



I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$



knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$



We then get :



$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$



Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$



then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$



but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$



Where is the problem?



Thanks







fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 22:45









J.G.

26.3k22541




26.3k22541










asked Jan 12 at 22:33









favulipofavulipo

1




1












  • $begingroup$
    By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
    $endgroup$
    – J.G.
    Jan 12 at 22:50


















  • $begingroup$
    By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
    $endgroup$
    – J.G.
    Jan 12 at 22:50
















$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50




$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50










1 Answer
1






active

oldest

votes


















0












$begingroup$

Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks JG I now understand my mistake. All is clear.
    $endgroup$
    – favulipo
    Jan 14 at 21:04











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071467%2ffourier-transform-to-solve-int-infty-infty-frac-sin3xx3-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks JG I now understand my mistake. All is clear.
    $endgroup$
    – favulipo
    Jan 14 at 21:04
















0












$begingroup$

Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks JG I now understand my mistake. All is clear.
    $endgroup$
    – favulipo
    Jan 14 at 21:04














0












0








0





$begingroup$

Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.






share|cite|improve this answer









$endgroup$



Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 12 at 22:48









J.G.J.G.

26.3k22541




26.3k22541












  • $begingroup$
    Thanks JG I now understand my mistake. All is clear.
    $endgroup$
    – favulipo
    Jan 14 at 21:04


















  • $begingroup$
    Thanks JG I now understand my mistake. All is clear.
    $endgroup$
    – favulipo
    Jan 14 at 21:04
















$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04




$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071467%2ffourier-transform-to-solve-int-infty-infty-frac-sin3xx3-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith