Fourier transform to solve $int_{- infty}^{+infty}frac{sin^3(x)}{x^3},dx$
$begingroup$
I think that I am almost there:
giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.
I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$
I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$
knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$
We then get :
$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$
then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$
but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$
Where is the problem?
Thanks
fourier-transform
$endgroup$
add a comment |
$begingroup$
I think that I am almost there:
giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.
I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$
I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$
knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$
We then get :
$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$
then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$
but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$
Where is the problem?
Thanks
fourier-transform
$endgroup$
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50
add a comment |
$begingroup$
I think that I am almost there:
giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.
I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$
I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$
knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$
We then get :
$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$
then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$
but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$
Where is the problem?
Thanks
fourier-transform
$endgroup$
I think that I am almost there:
giving $P(x)=1$ for $x in ]-1/2;1/2[$ and $P(x)=0$ elsewhere.
I managed to find that the convolution product $P*P*P=frac{3}{4}-x^2$ for $x in [-1/2;1/2]$
I found that Reverse Fourier transform of $P$ is $p=frac{1}{2pi}times frac{sin(x/2)}{x/2}$
knowing that Fourier Transform of
$ptimes p times p$ is $frac{1}{4pi^2}P*P*P$
We then get :
$int_{- infty}^{+infty} p(x)times p(x) times p(x)times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
$int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}times e^{ikx}dx =frac{1}{4pi^2}P*P*P(k)$
Then for $k=0$, $int_{- infty}^{+infty} frac{1}{8pi^3} frac{sin^3(x)}{x^3}dx =frac{1}{4pi^2}frac{3}{4}$
then I find $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{2}$
but this is wrong because $int_{- infty}^{+infty} frac{sin^3(x)}{x^3},dx =frac{3pi}{4}$
Where is the problem?
Thanks
fourier-transform
fourier-transform
edited Jan 12 at 22:45
J.G.
26.3k22541
26.3k22541
asked Jan 12 at 22:33
favulipofavulipo
1
1
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50
add a comment |
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.
$endgroup$
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071467%2ffourier-transform-to-solve-int-infty-infty-frac-sin3xx3-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.
$endgroup$
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
add a comment |
$begingroup$
Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.
$endgroup$
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
add a comment |
$begingroup$
Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.
$endgroup$
Your mistake is you forgot $p=operatorname{sinc}frac{x}{2}notequivoperatorname{sinc}x$. (In case the notation is unfamiliar, $operatorname{sinc}x=frac{sin x}{x}$, with $operatorname{sinc}0=1$ for continuity.) We have $int_{Bbb R}operatorname{sinc}^3frac{x}{2} dx=2int_{Bbb R}operatorname{sinc}^3y dy$ by a trivial substitution.
answered Jan 12 at 22:48
J.G.J.G.
26.3k22541
26.3k22541
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
add a comment |
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
$begingroup$
Thanks JG I now understand my mistake. All is clear.
$endgroup$
– favulipo
Jan 14 at 21:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071467%2ffourier-transform-to-solve-int-infty-infty-frac-sin3xx3-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
By the way, if you'd like an alternative to Fourier analysis, you can make a double integral using $x^{-3}=frac12 int_0^infty y^2exp (-xy)dy$. The result $sin x=frac{exp ix-exp -ix}{2i}$ lets you integrate out $x$, leaving a $y$-integral of a rational function of $y$.
$endgroup$
– J.G.
Jan 12 at 22:50