Matrix demonstration $A^k$
$begingroup$
Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $
Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$
linear-algebra
$endgroup$
add a comment |
$begingroup$
Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $
Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$
linear-algebra
$endgroup$
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
2
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
1
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01
add a comment |
$begingroup$
Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $
Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$
linear-algebra
$endgroup$
Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $
Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$
linear-algebra
linear-algebra
edited Jan 13 at 0:36
Robert Lewis
46.2k23066
46.2k23066
asked Jan 13 at 0:36
PTSONICPTSONIC
83
83
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
2
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
1
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01
add a comment |
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
2
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
1
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
2
2
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
1
1
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Try a simple induction on $k$; it is clear that for $k = 1$,
$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$
then assuming that for some $k$
$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$
we find
$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$
which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.
$endgroup$
add a comment |
$begingroup$
Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$
How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.
$endgroup$
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071571%2fmatrix-demonstration-ak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try a simple induction on $k$; it is clear that for $k = 1$,
$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$
then assuming that for some $k$
$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$
we find
$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$
which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.
$endgroup$
add a comment |
$begingroup$
Try a simple induction on $k$; it is clear that for $k = 1$,
$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$
then assuming that for some $k$
$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$
we find
$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$
which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.
$endgroup$
add a comment |
$begingroup$
Try a simple induction on $k$; it is clear that for $k = 1$,
$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$
then assuming that for some $k$
$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$
we find
$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$
which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.
$endgroup$
Try a simple induction on $k$; it is clear that for $k = 1$,
$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$
then assuming that for some $k$
$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$
we find
$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$
which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.
answered Jan 13 at 0:56
Robert LewisRobert Lewis
46.2k23066
46.2k23066
add a comment |
add a comment |
$begingroup$
Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$
How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.
$endgroup$
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
add a comment |
$begingroup$
Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$
How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.
$endgroup$
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
add a comment |
$begingroup$
Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$
How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.
$endgroup$
Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$
How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.
edited Jan 16 at 1:10
answered Jan 13 at 1:26
amdamd
30k21050
30k21050
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
add a comment |
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
$begingroup$
Very nice indeed, endorsed, +1!!!
$endgroup$
– Robert Lewis
Jan 13 at 1:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071571%2fmatrix-demonstration-ak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37
2
$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37
$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40
1
$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46
$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01