Proving $int_a^bsqrt{f^2+g^2}gesqrt{(int_a^b f)^2 + (int_a^b g)^2 } $ without using $|int_a^b...
$begingroup$
I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$
I failed. Can You help me with it?
real-analysis calculus complex-analysis analysis inequality
$endgroup$
add a comment |
$begingroup$
I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$
I failed. Can You help me with it?
real-analysis calculus complex-analysis analysis inequality
$endgroup$
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46
add a comment |
$begingroup$
I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$
I failed. Can You help me with it?
real-analysis calculus complex-analysis analysis inequality
$endgroup$
I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$
I failed. Can You help me with it?
real-analysis calculus complex-analysis analysis inequality
real-analysis calculus complex-analysis analysis inequality
edited Jan 13 at 0:10
Blue
48.4k870154
48.4k870154
asked Jan 12 at 21:35
Dr.AKADr.AKA
16610
16610
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46
add a comment |
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$
$endgroup$
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
add a comment |
$begingroup$
Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:
$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$
Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):
$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$
These integrals may be simplified into:
$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$
see this
So, finally, we have:
$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$
Or:
$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071415%2fproving-int-ab-sqrtf2g2-ge-sqrt-int-ab-f2-int-ab-g2-with%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$
$endgroup$
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
add a comment |
$begingroup$
This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$
$endgroup$
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
add a comment |
$begingroup$
This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$
$endgroup$
This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$
edited Jan 13 at 12:17
answered Jan 13 at 0:05
Kavi Rama MurthyKavi Rama Murthy
59.5k42161
59.5k42161
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
add a comment |
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
$endgroup$
– Dr.AKA
Jan 15 at 4:21
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
$begingroup$
@Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 5:19
add a comment |
$begingroup$
Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:
$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$
Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):
$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$
These integrals may be simplified into:
$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$
see this
So, finally, we have:
$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$
Or:
$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$
$endgroup$
add a comment |
$begingroup$
Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:
$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$
Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):
$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$
These integrals may be simplified into:
$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$
see this
So, finally, we have:
$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$
Or:
$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$
$endgroup$
add a comment |
$begingroup$
Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:
$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$
Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):
$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$
These integrals may be simplified into:
$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$
see this
So, finally, we have:
$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$
Or:
$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$
$endgroup$
Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:
$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$
Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):
$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$
These integrals may be simplified into:
$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$
see this
So, finally, we have:
$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$
Or:
$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$
edited Jan 13 at 9:46
answered Jan 12 at 23:03
Cardioid_Ass_22Cardioid_Ass_22
36814
36814
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071415%2fproving-int-ab-sqrtf2g2-ge-sqrt-int-ab-f2-int-ab-g2-with%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45
$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46