Proving $int_a^bsqrt{f^2+g^2}gesqrt{(int_a^b f)^2 + (int_a^b g)^2 } $ without using $|int_a^b...












-1












$begingroup$


I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$



I failed. Can You help me with it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please be more specific and explain what all your variables are and where they come from.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 21:45










  • $begingroup$
    What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
    $endgroup$
    – Xander Henderson
    Jan 12 at 21:46
















-1












$begingroup$


I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$



I failed. Can You help me with it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please be more specific and explain what all your variables are and where they come from.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 21:45










  • $begingroup$
    What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
    $endgroup$
    – Xander Henderson
    Jan 12 at 21:46














-1












-1








-1





$begingroup$


I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$



I failed. Can You help me with it?










share|cite|improve this question











$endgroup$




I have tried to prove this inequality
$$ int_a^b sqrt{f^2+g^2} ge sqrt{ left( int_a^b f right)^2 + left( int_a^b g right)^2 } $$
without the use the following theorem in complex analysis
$$left| int_a^b z(t),dt right| le int_a^b |z(t)|,dt$$



I failed. Can You help me with it?







real-analysis calculus complex-analysis analysis inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 0:10









Blue

48.4k870154




48.4k870154










asked Jan 12 at 21:35









Dr.AKADr.AKA

16610




16610












  • $begingroup$
    Please be more specific and explain what all your variables are and where they come from.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 21:45










  • $begingroup$
    What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
    $endgroup$
    – Xander Henderson
    Jan 12 at 21:46


















  • $begingroup$
    Please be more specific and explain what all your variables are and where they come from.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 21:45










  • $begingroup$
    What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
    $endgroup$
    – Xander Henderson
    Jan 12 at 21:46
















$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45




$begingroup$
Please be more specific and explain what all your variables are and where they come from.
$endgroup$
– Viktor Glombik
Jan 12 at 21:45












$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46




$begingroup$
What tools do you have at your disposal? Are you familiar with the fact that for a real valued function $f$, we have $$left| int f right| le int |f|? $$
$endgroup$
– Xander Henderson
Jan 12 at 21:46










2 Answers
2






active

oldest

votes


















3












$begingroup$

This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
    $endgroup$
    – Dr.AKA
    Jan 15 at 4:21












  • $begingroup$
    @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 5:19





















-1












$begingroup$

Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:



$(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$



Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):



$$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$



These integrals may be simplified into:



$$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$



see this

So, finally, we have:



$$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$



Or:



$$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071415%2fproving-int-ab-sqrtf2g2-ge-sqrt-int-ab-f2-int-ab-g2-with%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
      $endgroup$
      – Dr.AKA
      Jan 15 at 4:21












    • $begingroup$
      @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
      $endgroup$
      – Kavi Rama Murthy
      Jan 15 at 5:19


















    3












    $begingroup$

    This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
      $endgroup$
      – Dr.AKA
      Jan 15 at 4:21












    • $begingroup$
      @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
      $endgroup$
      – Kavi Rama Murthy
      Jan 15 at 5:19
















    3












    3








    3





    $begingroup$

    This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$






    share|cite|improve this answer











    $endgroup$



    This is quite easy. Let $c,d in mathbb R$ with $c^{2}+d^{2}=1$. Then $cint_a^{b}f +dint_a^{b} g=int_a^{b} (cf+dg)leq int_a^{b} sqrt {f^{2}+g^{2}}$ by C-S inequality. Now just take $c=frac {int_a^{b}f} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$ and $d=frac {int_a^{b}g} {sqrt {(int_a^{b}f)^{2}+(int_a^{b}g)^{2}}}$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 13 at 12:17

























    answered Jan 13 at 0:05









    Kavi Rama MurthyKavi Rama Murthy

    59.5k42161




    59.5k42161












    • $begingroup$
      where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
      $endgroup$
      – Dr.AKA
      Jan 15 at 4:21












    • $begingroup$
      @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
      $endgroup$
      – Kavi Rama Murthy
      Jan 15 at 5:19




















    • $begingroup$
      where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
      $endgroup$
      – Dr.AKA
      Jan 15 at 4:21












    • $begingroup$
      @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
      $endgroup$
      – Kavi Rama Murthy
      Jan 15 at 5:19


















    $begingroup$
    where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
    $endgroup$
    – Dr.AKA
    Jan 15 at 4:21






    $begingroup$
    where goes the $ b-a $ in your C-S inequality? : ) isn't that right that $ int_a^b 1 = b-a $ ?
    $endgroup$
    – Dr.AKA
    Jan 15 at 4:21














    $begingroup$
    @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 5:19






    $begingroup$
    @Dr.AKA I am not applying C-S inequality in integral form. The only inequality needed here $|ax+by| leq sqrt {a^{2}+b^{2}} sqrt {x^{2}+y^{2}}$ for real numbers $a,b,x,y$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 5:19













    -1












    $begingroup$

    Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:



    $(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$



    Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):



    $$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$



    These integrals may be simplified into:



    $$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$



    see this

    So, finally, we have:



    $$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$



    Or:



    $$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$






    share|cite|improve this answer











    $endgroup$


















      -1












      $begingroup$

      Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:



      $(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$



      Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):



      $$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$



      These integrals may be simplified into:



      $$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$



      see this

      So, finally, we have:



      $$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$



      Or:



      $$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$






      share|cite|improve this answer











      $endgroup$
















        -1












        -1








        -1





        $begingroup$

        Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:



        $(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$



        Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):



        $$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$



        These integrals may be simplified into:



        $$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$



        see this

        So, finally, we have:



        $$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$



        Or:



        $$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$






        share|cite|improve this answer











        $endgroup$



        Suppose $z(r)=f(r)+ig(r)$, where $r$ is a real variable and $f$ and $g$ are real valued functions. Then:



        $(f(s)g(t)-f(t)g(s))^2geq0 quad;forall;;s,tinmathbb R implies f(s)^2g(t)^2+f(t)^2g(s)^2geq2f(t)g(t)f(s)g(s)\implies f(s)^2g(t)^2+f(s)^2f(t)^2+f(t)^2g(s)^2+g(t)^2g(s)^2geq f(s)^2f(t)^2+2f(t)g(t)f(s)g(s)+g(t)^2g(s)^2\implies(f(s)^2+g(s)^2)(f(t)^2+g(t)^2)geq(f(s)f(t)+g(t)g(s))^2\impliessqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}geq f(s)f(t)+g(t)g(s)$



        Now, we'll need to use a generalized form of inequalities between functions for two variable functions. That'll give us (I'm going to assume $b>a$ in the following):



        $$int_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t)+g(t)g(s))quad dtds\impliesint_{s=a}^{s=b}int_{t=a}^{t=b}sqrt{(f(s)^2+g(s)^2)}sqrt{(f(t)^2+g(t)^2)}quad dtdsgeq int_{s=a}^{s=b}int_{t=a}^{t=b} (f(s)f(t))quad dsdtquad + int_{s=a}^{s=b}int_{t=a}^{t=b} (g(t)g(s))quad dsdt$$



        These integrals may be simplified into:



        $$Bigl(int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drBigr)^2geq Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2$$



        see this

        So, finally, we have:



        $$int_{r=a}^{r=b}sqrt{(f(r)^2+g(r)^2)}quad drgeq sqrt{Bigl(int_{r=a}^{r=b} f(r)quad drBigr)^2 + Bigl(int_{r=a}^{r=b} g(r)quad drBigr)^2}$$



        Or:



        $$int_a^b|z(r)|quad drgeq Biggl|int_a^bz(r)quad dr Biggr|$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 13 at 9:46

























        answered Jan 12 at 23:03









        Cardioid_Ass_22Cardioid_Ass_22

        36814




        36814






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071415%2fproving-int-ab-sqrtf2g2-ge-sqrt-int-ab-f2-int-ab-g2-with%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$