$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$












0












$begingroup$


$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$



Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.










share|cite|improve this question











$endgroup$












  • $begingroup$
    the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
    $endgroup$
    – David Dan
    Jan 11 at 12:42










  • $begingroup$
    new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
    $endgroup$
    – David Dan
    Jan 11 at 12:50












  • $begingroup$
    Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
    $endgroup$
    – clathratus
    Jan 11 at 16:57










  • $begingroup$
    Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
    $endgroup$
    – clathratus
    Jan 11 at 17:03
















0












$begingroup$


$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$



Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.










share|cite|improve this question











$endgroup$












  • $begingroup$
    the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
    $endgroup$
    – David Dan
    Jan 11 at 12:42










  • $begingroup$
    new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
    $endgroup$
    – David Dan
    Jan 11 at 12:50












  • $begingroup$
    Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
    $endgroup$
    – clathratus
    Jan 11 at 16:57










  • $begingroup$
    Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
    $endgroup$
    – clathratus
    Jan 11 at 17:03














0












0








0





$begingroup$


$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$



Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.










share|cite|improve this question











$endgroup$




$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$



Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 11 at 12:04









Zacky

6,3301858




6,3301858










asked Jan 11 at 11:56









David DanDavid Dan

31




31












  • $begingroup$
    the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
    $endgroup$
    – David Dan
    Jan 11 at 12:42










  • $begingroup$
    new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
    $endgroup$
    – David Dan
    Jan 11 at 12:50












  • $begingroup$
    Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
    $endgroup$
    – clathratus
    Jan 11 at 16:57










  • $begingroup$
    Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
    $endgroup$
    – clathratus
    Jan 11 at 17:03


















  • $begingroup$
    the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
    $endgroup$
    – David Dan
    Jan 11 at 12:42










  • $begingroup$
    new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
    $endgroup$
    – David Dan
    Jan 11 at 12:50












  • $begingroup$
    Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
    $endgroup$
    – clathratus
    Jan 11 at 16:57










  • $begingroup$
    Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
    $endgroup$
    – clathratus
    Jan 11 at 17:03
















$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42




$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42












$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50






$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50














$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57




$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57












$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03




$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03










2 Answers
2






active

oldest

votes


















1












$begingroup$

Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
    $endgroup$
    – David Dan
    Jan 11 at 18:30



















1












$begingroup$

First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069759%2fia-b-int-01-sin-left-ln-frac1x-right-fracxb-xa-ln-xdx-b0-a%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
      $endgroup$
      – David Dan
      Jan 11 at 18:30
















    1












    $begingroup$

    Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
      $endgroup$
      – David Dan
      Jan 11 at 18:30














    1












    1








    1





    $begingroup$

    Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$






    share|cite|improve this answer









    $endgroup$



    Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 11 at 16:16









    Frank W.Frank W.

    3,5731321




    3,5731321












    • $begingroup$
      How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
      $endgroup$
      – David Dan
      Jan 11 at 18:30


















    • $begingroup$
      How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
      $endgroup$
      – David Dan
      Jan 11 at 18:30
















    $begingroup$
    How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
    $endgroup$
    – David Dan
    Jan 11 at 18:30




    $begingroup$
    How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
    $endgroup$
    – David Dan
    Jan 11 at 18:30











    1












    $begingroup$

    First, under $xto e^{-x}$
    $$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
    and hence
    $$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      First, under $xto e^{-x}$
      $$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
      and hence
      $$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        First, under $xto e^{-x}$
        $$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
        and hence
        $$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$






        share|cite|improve this answer











        $endgroup$



        First, under $xto e^{-x}$
        $$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
        and hence
        $$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 11 at 16:52

























        answered Jan 11 at 16:07









        xpaulxpaul

        22.7k24455




        22.7k24455






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069759%2fia-b-int-01-sin-left-ln-frac1x-right-fracxb-xa-ln-xdx-b0-a%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith