$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$
$begingroup$
$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$
Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.
real-analysis
$endgroup$
add a comment |
$begingroup$
$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$
Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.
real-analysis
$endgroup$
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03
add a comment |
$begingroup$
$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$
Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.
real-analysis
$endgroup$
$$I(a,b)=int_0^1 sinleft(ln frac{1}{x}right)frac{x^b-x^a}{ln x}dx, b>0,a>0$$
Please help. I can't find a function to see if the function is absolute and uniform convergent using Weierstrass convergence criteria.
real-analysis
real-analysis
edited Jan 11 at 12:04


Zacky
6,3301858
6,3301858
asked Jan 11 at 11:56


David DanDavid Dan
31
31
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03
add a comment |
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$
$endgroup$
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
add a comment |
$begingroup$
First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069759%2fia-b-int-01-sin-left-ln-frac1x-right-fracxb-xa-ln-xdx-b0-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$
$endgroup$
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
add a comment |
$begingroup$
Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$
$endgroup$
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
add a comment |
$begingroup$
Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$
$endgroup$
Using your definition, we see that there is a natural log in the denominator. An easy way to remove that is simply by using differentiation under the integral. Therefore, we differentiate with respect to $b$ because$$frac {mathrm dx^b}{mathrm db}=x^blog x$$Hence$$begin{align*}mathfrak I'(a,b) & =intlimits_0^1mathrm dx, x^bsinleft(logfrac 1xright)end{align*}$$Now make a transformation $xmapstologtfrac 1x$ to get rid of the nested sine - log function. Therefore, the limits change to zero and infinity, so that$$begin{align*}mathfrak{I}'(a,b) & =intlimits_0^{infty}mathrm dx,e^{x(1+b)}sin x\ & =frac 1{1+(1+b)^2}end{align*}$$Where the last line is derived by integrating the integral by parts twice. Since we have $mathfrak I'(a,b)$, we integrate it back with respect to $b$ to get$$mathfrak{I}(a,b)=arctan(1+b)+C$$To find $C$, we observe that when $a=b$, then $mathfrak{I}(a,b)=0$. Hence, we get that $C=arctan(1+a)$ so the final answer becomes$$intlimits_0^1mathrm dx,frac {x^b-x^a}{log x}sinleft(logfrac 1xright)color{blue}{=arctan(1+b)-arctan(1+a)}$$
answered Jan 11 at 16:16
Frank W.Frank W.
3,5731321
3,5731321
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
add a comment |
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
$begingroup$
How do you make the transformation? Shoudn't the integer after transformation $x->logfrac1x$ become $int_0^infty{sinx}*e^{x(1-b)}dx$. I used the substitution $logfrac1x=u$ , $e^{-u}=x$ then $-frac1xdx=du$. Don't know where I'm wrong. Can you tell me please how to solve $int_0^infty{sinx}*e^{x(1+b)}dx$? And thanks for the help.
$endgroup$
– David Dan
Jan 11 at 18:30
add a comment |
$begingroup$
First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$
$endgroup$
add a comment |
$begingroup$
First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$
$endgroup$
add a comment |
$begingroup$
First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$
$endgroup$
First, under $xto e^{-x}$
$$ frac{partial I(a,b)}{partial b}=int_0^1sin(ln(frac1x))x^bdx=int_0^infty e^{(b+1)x}sin xdx=frac{1}{(b+1)^2+1} $$
and hence
$$ I(a,b)=int_a^bfrac{1}{(s+1)^2+1}ds=arctan (b+1)-arctan(a+1). $$
edited Jan 11 at 16:52
answered Jan 11 at 16:07


xpaulxpaul
22.7k24455
22.7k24455
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069759%2fia-b-int-01-sin-left-ln-frac1x-right-fracxb-xa-ln-xdx-b0-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
the question is to calculate the integrals with parameters.I have found this problem in the proposed problems chapter at improper integrals.[drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] [drive.google.com/open?id=152R-HdfOJK7Y85YqQUZeVCGHmUOCvz2B] are the theorems i usually use for this kind of problem
$endgroup$
– David Dan
Jan 11 at 12:42
$begingroup$
new links in case the ones above doesn't work [imgur.com/ZL15gbO] imgur.com/gallery/MHVcQeE
$endgroup$
– David Dan
Jan 11 at 12:50
$begingroup$
Note that $$sin[log(1/x)]=sin(-log x)=-sinlog x$$
$endgroup$
– clathratus
Jan 11 at 16:57
$begingroup$
Then set $$J(s;a,b)=int_0^1sin(slog x)frac{x^a-x^b}{log x}dx$$ and note that $J(0;a,b)=0$ as well as $J(1;a,b)=I(a,b)$. Then take $frac{partial}{partial s}$ on both sides to see that $$frac{partial}{partial s}J(s;a,b)=int_0^1(x^a-x^b)cos(s log x)dx$$ Which may be easier
$endgroup$
– clathratus
Jan 11 at 17:03