If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that $a^2+b^2$ is composite.












1












$begingroup$



If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.




Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $b=/=1$ ?
    $endgroup$
    – Sauhard Sharma
    Jan 14 at 9:33










  • $begingroup$
    I meant not equal to -1. I don't know how to type that symbol.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:34






  • 1




    $begingroup$
    Compute the discriminant.
    $endgroup$
    – Wuestenfux
    Jan 14 at 9:35






  • 2




    $begingroup$
    Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
    $endgroup$
    – Yong Hao Ng
    Jan 14 at 9:49












  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:54
















1












$begingroup$



If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.




Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $b=/=1$ ?
    $endgroup$
    – Sauhard Sharma
    Jan 14 at 9:33










  • $begingroup$
    I meant not equal to -1. I don't know how to type that symbol.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:34






  • 1




    $begingroup$
    Compute the discriminant.
    $endgroup$
    – Wuestenfux
    Jan 14 at 9:35






  • 2




    $begingroup$
    Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
    $endgroup$
    – Yong Hao Ng
    Jan 14 at 9:49












  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:54














1












1








1





$begingroup$



If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.




Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.










share|cite|improve this question











$endgroup$





If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.




Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.







number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 14 at 10:25









rtybase

11k21533




11k21533










asked Jan 14 at 9:31









Shashwat1337Shashwat1337

789




789












  • $begingroup$
    What is $b=/=1$ ?
    $endgroup$
    – Sauhard Sharma
    Jan 14 at 9:33










  • $begingroup$
    I meant not equal to -1. I don't know how to type that symbol.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:34






  • 1




    $begingroup$
    Compute the discriminant.
    $endgroup$
    – Wuestenfux
    Jan 14 at 9:35






  • 2




    $begingroup$
    Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
    $endgroup$
    – Yong Hao Ng
    Jan 14 at 9:49












  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:54


















  • $begingroup$
    What is $b=/=1$ ?
    $endgroup$
    – Sauhard Sharma
    Jan 14 at 9:33










  • $begingroup$
    I meant not equal to -1. I don't know how to type that symbol.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:34






  • 1




    $begingroup$
    Compute the discriminant.
    $endgroup$
    – Wuestenfux
    Jan 14 at 9:35






  • 2




    $begingroup$
    Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
    $endgroup$
    – Yong Hao Ng
    Jan 14 at 9:49












  • $begingroup$
    Thanks. I got it.
    $endgroup$
    – Shashwat1337
    Jan 14 at 9:54
















$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33




$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33












$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34




$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34




1




1




$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35




$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35




2




2




$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49






$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49














$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54




$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54










1 Answer
1






active

oldest

votes


















7












$begingroup$

From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$

Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073025%2fif-x2axb1-0-a-b-in-mathbbz-has-integral-roots-prove-that-a2b2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    From Vieta's
    $$x_1 + x_2 = -a$$
    $$x_1 cdot x_2 = b+1$$
    or
    $$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
    x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
    x_1^2+x_2^2+x_1^2x_2^2+1=\
    left(x_1^2+1right)left(x_2^2+1right)$$

    Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.






    share|cite|improve this answer











    $endgroup$


















      7












      $begingroup$

      From Vieta's
      $$x_1 + x_2 = -a$$
      $$x_1 cdot x_2 = b+1$$
      or
      $$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
      x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
      x_1^2+x_2^2+x_1^2x_2^2+1=\
      left(x_1^2+1right)left(x_2^2+1right)$$

      Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.






      share|cite|improve this answer











      $endgroup$
















        7












        7








        7





        $begingroup$

        From Vieta's
        $$x_1 + x_2 = -a$$
        $$x_1 cdot x_2 = b+1$$
        or
        $$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
        x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
        x_1^2+x_2^2+x_1^2x_2^2+1=\
        left(x_1^2+1right)left(x_2^2+1right)$$

        Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.






        share|cite|improve this answer











        $endgroup$



        From Vieta's
        $$x_1 + x_2 = -a$$
        $$x_1 cdot x_2 = b+1$$
        or
        $$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
        x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
        x_1^2+x_2^2+x_1^2x_2^2+1=\
        left(x_1^2+1right)left(x_2^2+1right)$$

        Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 14 at 10:22

























        answered Jan 14 at 10:13









        rtybasertybase

        11k21533




        11k21533






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073025%2fif-x2axb1-0-a-b-in-mathbbz-has-integral-roots-prove-that-a2b2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith