If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that $a^2+b^2$ is composite.
$begingroup$
If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.
Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.
number-theory
$endgroup$
add a comment |
$begingroup$
If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.
Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.
number-theory
$endgroup$
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
1
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
2
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54
add a comment |
$begingroup$
If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.
Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.
number-theory
$endgroup$
If $x^2+ax+b+1=0$ ($a,binmathbb{Z}$) has integral roots, prove that
$a^2+b^2$ is composite.
Would someone please help me to solve the above question? I'm not able to understand how I should proceed.
Take $bne-1$.
number-theory
number-theory
edited Jan 14 at 10:25
rtybase
11k21533
11k21533
asked Jan 14 at 9:31
Shashwat1337Shashwat1337
789
789
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
1
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
2
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54
add a comment |
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
1
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
2
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
1
1
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
2
2
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$
Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073025%2fif-x2axb1-0-a-b-in-mathbbz-has-integral-roots-prove-that-a2b2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$
Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.
$endgroup$
add a comment |
$begingroup$
From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$
Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.
$endgroup$
add a comment |
$begingroup$
From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$
Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.
$endgroup$
From Vieta's
$$x_1 + x_2 = -a$$
$$x_1 cdot x_2 = b+1$$
or
$$a^2+b^2=left(x_1+x_2right)^2+left(x_1cdot x_2-1right)^2=\
x_1^2+x_2^2+2x_1x_2+x_1^2x_2^2-2x_1x_2+1=\
x_1^2+x_2^2+x_1^2x_2^2+1=\
left(x_1^2+1right)left(x_2^2+1right)$$
Since $bne-1$, then none of $x_1,x_2$ is $0$ and the result follows.
edited Jan 14 at 10:22
answered Jan 14 at 10:13
rtybasertybase
11k21533
11k21533
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073025%2fif-x2axb1-0-a-b-in-mathbbz-has-integral-roots-prove-that-a2b2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $b=/=1$ ?
$endgroup$
– Sauhard Sharma
Jan 14 at 9:33
$begingroup$
I meant not equal to -1. I don't know how to type that symbol.
$endgroup$
– Shashwat1337
Jan 14 at 9:34
1
$begingroup$
Compute the discriminant.
$endgroup$
– Wuestenfux
Jan 14 at 9:35
2
$begingroup$
Let $$x^2+ax+b+1=(x-r)(x-s)$$ so that $r,s$ are the two roots, then try to compute $a^2+b^2$ in terms of $r,s$.
$endgroup$
– Yong Hao Ng
Jan 14 at 9:49
$begingroup$
Thanks. I got it.
$endgroup$
– Shashwat1337
Jan 14 at 9:54