Integral Convergence Estimate with cut-off function
$begingroup$
Let $u in L^{infty}(Omega)cap H_{0}^{1}(Omega)$ and define a cut-off function $eta_{R} in C_{0}^{infty}(mathbb{R})$ for $Omega subset mathbb{R}$ an unbounded (interval) domain as follows
$$eta_{R}(x):=begin{cases}
1 &, text{if }|x|leq R\
0 &, text{if } xgeq R+1text{ or }xleq-R-1\
0<eta_{R}(x)<1 &, text{ other }x
end{cases}
$$
Now define a function $u_R = ueta_{R}$. Define a functional $I[u] = ||u||_{H_{0}^{1}(Omega)}^{2} - ||u||_{L^{p}(Omega)}^{p}$ for $2leq p <infty$.
I would like to show that $I[u_{R}] = I[u]+o(1)$ as $Rtoinfty$. This is my attempt so far:
begin{align*}
|I[u]-I[u_{R}]| &leq |, ||u||_{H_{0}^{1}(Omega)}^{2}-||u_{R}||_{H_{0}^{1}(Omega)}^{2},| + |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},| \
&leq |, ||u||_{L^{2}(Omega)}^{2} - ||u||_{L^{2}(Omega)}^{2},| + |, ||nabla u||_{L^{2}(Omega)}^{2}- ||nabla u_{R}||_{L^{2}(Omega)}^{2},|+ |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},|\
&= A + B + C
end{align*}
So, I would like to see the estimate one by one. First, I will start from $A$. Observe that
begin{align*}
A &leq int_{Omega}|u^{2}eta_{R}^{2}-u^{2}|dx \
&leq suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}^{2}|dx\
&leq 2suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}|dx
end{align*}
Similarly for $C$, I will obtain the following estimate
$$C leq psuplimits_{Omega}|u|^{p}int_{Omega}|1-eta_{R}|dx$$
Finally, for $B$, I would obtain
$$B leq int_{Omega}|partial_{x}(ueta_{R})|^{2} - (partial_{x}u)^{2}|dx$$
So, I have two main problems here.
1. How to ensure that $int_{Omega}|1-eta_{R}|dx to 0$ as $Rtoinfty$ rigorously?
2. What should I do to estimate $B$ since I am not sure what to do with the term $partial_{x}eta_{R}$ here.
Any help will much be appreciated!
functional-analysis convergence
$endgroup$
add a comment |
$begingroup$
Let $u in L^{infty}(Omega)cap H_{0}^{1}(Omega)$ and define a cut-off function $eta_{R} in C_{0}^{infty}(mathbb{R})$ for $Omega subset mathbb{R}$ an unbounded (interval) domain as follows
$$eta_{R}(x):=begin{cases}
1 &, text{if }|x|leq R\
0 &, text{if } xgeq R+1text{ or }xleq-R-1\
0<eta_{R}(x)<1 &, text{ other }x
end{cases}
$$
Now define a function $u_R = ueta_{R}$. Define a functional $I[u] = ||u||_{H_{0}^{1}(Omega)}^{2} - ||u||_{L^{p}(Omega)}^{p}$ for $2leq p <infty$.
I would like to show that $I[u_{R}] = I[u]+o(1)$ as $Rtoinfty$. This is my attempt so far:
begin{align*}
|I[u]-I[u_{R}]| &leq |, ||u||_{H_{0}^{1}(Omega)}^{2}-||u_{R}||_{H_{0}^{1}(Omega)}^{2},| + |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},| \
&leq |, ||u||_{L^{2}(Omega)}^{2} - ||u||_{L^{2}(Omega)}^{2},| + |, ||nabla u||_{L^{2}(Omega)}^{2}- ||nabla u_{R}||_{L^{2}(Omega)}^{2},|+ |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},|\
&= A + B + C
end{align*}
So, I would like to see the estimate one by one. First, I will start from $A$. Observe that
begin{align*}
A &leq int_{Omega}|u^{2}eta_{R}^{2}-u^{2}|dx \
&leq suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}^{2}|dx\
&leq 2suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}|dx
end{align*}
Similarly for $C$, I will obtain the following estimate
$$C leq psuplimits_{Omega}|u|^{p}int_{Omega}|1-eta_{R}|dx$$
Finally, for $B$, I would obtain
$$B leq int_{Omega}|partial_{x}(ueta_{R})|^{2} - (partial_{x}u)^{2}|dx$$
So, I have two main problems here.
1. How to ensure that $int_{Omega}|1-eta_{R}|dx to 0$ as $Rtoinfty$ rigorously?
2. What should I do to estimate $B$ since I am not sure what to do with the term $partial_{x}eta_{R}$ here.
Any help will much be appreciated!
functional-analysis convergence
$endgroup$
add a comment |
$begingroup$
Let $u in L^{infty}(Omega)cap H_{0}^{1}(Omega)$ and define a cut-off function $eta_{R} in C_{0}^{infty}(mathbb{R})$ for $Omega subset mathbb{R}$ an unbounded (interval) domain as follows
$$eta_{R}(x):=begin{cases}
1 &, text{if }|x|leq R\
0 &, text{if } xgeq R+1text{ or }xleq-R-1\
0<eta_{R}(x)<1 &, text{ other }x
end{cases}
$$
Now define a function $u_R = ueta_{R}$. Define a functional $I[u] = ||u||_{H_{0}^{1}(Omega)}^{2} - ||u||_{L^{p}(Omega)}^{p}$ for $2leq p <infty$.
I would like to show that $I[u_{R}] = I[u]+o(1)$ as $Rtoinfty$. This is my attempt so far:
begin{align*}
|I[u]-I[u_{R}]| &leq |, ||u||_{H_{0}^{1}(Omega)}^{2}-||u_{R}||_{H_{0}^{1}(Omega)}^{2},| + |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},| \
&leq |, ||u||_{L^{2}(Omega)}^{2} - ||u||_{L^{2}(Omega)}^{2},| + |, ||nabla u||_{L^{2}(Omega)}^{2}- ||nabla u_{R}||_{L^{2}(Omega)}^{2},|+ |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},|\
&= A + B + C
end{align*}
So, I would like to see the estimate one by one. First, I will start from $A$. Observe that
begin{align*}
A &leq int_{Omega}|u^{2}eta_{R}^{2}-u^{2}|dx \
&leq suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}^{2}|dx\
&leq 2suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}|dx
end{align*}
Similarly for $C$, I will obtain the following estimate
$$C leq psuplimits_{Omega}|u|^{p}int_{Omega}|1-eta_{R}|dx$$
Finally, for $B$, I would obtain
$$B leq int_{Omega}|partial_{x}(ueta_{R})|^{2} - (partial_{x}u)^{2}|dx$$
So, I have two main problems here.
1. How to ensure that $int_{Omega}|1-eta_{R}|dx to 0$ as $Rtoinfty$ rigorously?
2. What should I do to estimate $B$ since I am not sure what to do with the term $partial_{x}eta_{R}$ here.
Any help will much be appreciated!
functional-analysis convergence
$endgroup$
Let $u in L^{infty}(Omega)cap H_{0}^{1}(Omega)$ and define a cut-off function $eta_{R} in C_{0}^{infty}(mathbb{R})$ for $Omega subset mathbb{R}$ an unbounded (interval) domain as follows
$$eta_{R}(x):=begin{cases}
1 &, text{if }|x|leq R\
0 &, text{if } xgeq R+1text{ or }xleq-R-1\
0<eta_{R}(x)<1 &, text{ other }x
end{cases}
$$
Now define a function $u_R = ueta_{R}$. Define a functional $I[u] = ||u||_{H_{0}^{1}(Omega)}^{2} - ||u||_{L^{p}(Omega)}^{p}$ for $2leq p <infty$.
I would like to show that $I[u_{R}] = I[u]+o(1)$ as $Rtoinfty$. This is my attempt so far:
begin{align*}
|I[u]-I[u_{R}]| &leq |, ||u||_{H_{0}^{1}(Omega)}^{2}-||u_{R}||_{H_{0}^{1}(Omega)}^{2},| + |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},| \
&leq |, ||u||_{L^{2}(Omega)}^{2} - ||u||_{L^{2}(Omega)}^{2},| + |, ||nabla u||_{L^{2}(Omega)}^{2}- ||nabla u_{R}||_{L^{2}(Omega)}^{2},|+ |, ||u||_{L^{p}(Omega)}^{p} - ||u_{R}||_{L^{p}(Omega)}^{p},|\
&= A + B + C
end{align*}
So, I would like to see the estimate one by one. First, I will start from $A$. Observe that
begin{align*}
A &leq int_{Omega}|u^{2}eta_{R}^{2}-u^{2}|dx \
&leq suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}^{2}|dx\
&leq 2suplimits_{Omega}u^{2}int_{Omega}|1-eta_{R}|dx
end{align*}
Similarly for $C$, I will obtain the following estimate
$$C leq psuplimits_{Omega}|u|^{p}int_{Omega}|1-eta_{R}|dx$$
Finally, for $B$, I would obtain
$$B leq int_{Omega}|partial_{x}(ueta_{R})|^{2} - (partial_{x}u)^{2}|dx$$
So, I have two main problems here.
1. How to ensure that $int_{Omega}|1-eta_{R}|dx to 0$ as $Rtoinfty$ rigorously?
2. What should I do to estimate $B$ since I am not sure what to do with the term $partial_{x}eta_{R}$ here.
Any help will much be appreciated!
functional-analysis convergence
functional-analysis convergence
asked Jan 11 at 3:51
Evan William ChandraEvan William Chandra
577313
577313
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069465%2fintegral-convergence-estimate-with-cut-off-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069465%2fintegral-convergence-estimate-with-cut-off-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown