Integrate $int_{-1}^1 frac x{e^x+x+1}$












0












$begingroup$


How to approach this integral?I tried to add subtract $e^{x}+1$. But I didn't get too far.



$$int_{-1}^{1}frac{x}{e^{x}+x+1}dx$$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    How to approach this integral?I tried to add subtract $e^{x}+1$. But I didn't get too far.



    $$int_{-1}^{1}frac{x}{e^{x}+x+1}dx$$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      How to approach this integral?I tried to add subtract $e^{x}+1$. But I didn't get too far.



      $$int_{-1}^{1}frac{x}{e^{x}+x+1}dx$$










      share|cite|improve this question











      $endgroup$




      How to approach this integral?I tried to add subtract $e^{x}+1$. But I didn't get too far.



      $$int_{-1}^{1}frac{x}{e^{x}+x+1}dx$$







      real-analysis integration definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 22:12









      Michael Rozenberg

      103k1891195




      103k1891195










      asked Jan 12 at 21:38









      Vali ROVali RO

      736




      736






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          The hint:



          Use $$frac{x}{e^x+x+1}=1-frac{e^x+1}{e^x+x+1}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @Vali RO You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 21:47



















          3












          $begingroup$

          Hint:



          $$begin{align}int_{-1}^1frac{x}{e^x+1+x}mathrm dx&=int_{-1}^1frac{x+e^x+1-e^x-1}{e^x+1+x}mathrm dx\&=int_{-1}^1left(1-frac{1+e^x}{1+x+e^x}right)mathrm dxend{align}$$



          Can you see how the numerator and denominator relate to each other in the new fractional term? How do you integrate such terms?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
            $endgroup$
            – Vali RO
            Jan 12 at 21:46










          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @ValiRO yes exactly :)
            $endgroup$
            – John Doe
            Jan 12 at 23:49











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071417%2fintegrate-int-11-frac-xexx1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          The hint:



          Use $$frac{x}{e^x+x+1}=1-frac{e^x+1}{e^x+x+1}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @Vali RO You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 21:47
















          6












          $begingroup$

          The hint:



          Use $$frac{x}{e^x+x+1}=1-frac{e^x+1}{e^x+x+1}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @Vali RO You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 21:47














          6












          6








          6





          $begingroup$

          The hint:



          Use $$frac{x}{e^x+x+1}=1-frac{e^x+1}{e^x+x+1}.$$






          share|cite|improve this answer









          $endgroup$



          The hint:



          Use $$frac{x}{e^x+x+1}=1-frac{e^x+1}{e^x+x+1}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 21:40









          Michael RozenbergMichael Rozenberg

          103k1891195




          103k1891195












          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @Vali RO You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 21:47


















          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @Vali RO You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 12 at 21:47
















          $begingroup$
          Thank you, I did it :)
          $endgroup$
          – Vali RO
          Jan 12 at 21:47




          $begingroup$
          Thank you, I did it :)
          $endgroup$
          – Vali RO
          Jan 12 at 21:47












          $begingroup$
          @Vali RO You are welcome!
          $endgroup$
          – Michael Rozenberg
          Jan 12 at 21:47




          $begingroup$
          @Vali RO You are welcome!
          $endgroup$
          – Michael Rozenberg
          Jan 12 at 21:47











          3












          $begingroup$

          Hint:



          $$begin{align}int_{-1}^1frac{x}{e^x+1+x}mathrm dx&=int_{-1}^1frac{x+e^x+1-e^x-1}{e^x+1+x}mathrm dx\&=int_{-1}^1left(1-frac{1+e^x}{1+x+e^x}right)mathrm dxend{align}$$



          Can you see how the numerator and denominator relate to each other in the new fractional term? How do you integrate such terms?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
            $endgroup$
            – Vali RO
            Jan 12 at 21:46










          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @ValiRO yes exactly :)
            $endgroup$
            – John Doe
            Jan 12 at 23:49
















          3












          $begingroup$

          Hint:



          $$begin{align}int_{-1}^1frac{x}{e^x+1+x}mathrm dx&=int_{-1}^1frac{x+e^x+1-e^x-1}{e^x+1+x}mathrm dx\&=int_{-1}^1left(1-frac{1+e^x}{1+x+e^x}right)mathrm dxend{align}$$



          Can you see how the numerator and denominator relate to each other in the new fractional term? How do you integrate such terms?






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
            $endgroup$
            – Vali RO
            Jan 12 at 21:46










          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @ValiRO yes exactly :)
            $endgroup$
            – John Doe
            Jan 12 at 23:49














          3












          3








          3





          $begingroup$

          Hint:



          $$begin{align}int_{-1}^1frac{x}{e^x+1+x}mathrm dx&=int_{-1}^1frac{x+e^x+1-e^x-1}{e^x+1+x}mathrm dx\&=int_{-1}^1left(1-frac{1+e^x}{1+x+e^x}right)mathrm dxend{align}$$



          Can you see how the numerator and denominator relate to each other in the new fractional term? How do you integrate such terms?






          share|cite|improve this answer









          $endgroup$



          Hint:



          $$begin{align}int_{-1}^1frac{x}{e^x+1+x}mathrm dx&=int_{-1}^1frac{x+e^x+1-e^x-1}{e^x+1+x}mathrm dx\&=int_{-1}^1left(1-frac{1+e^x}{1+x+e^x}right)mathrm dxend{align}$$



          Can you see how the numerator and denominator relate to each other in the new fractional term? How do you integrate such terms?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 21:43









          John DoeJohn Doe

          11.1k11238




          11.1k11238












          • $begingroup$
            I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
            $endgroup$
            – Vali RO
            Jan 12 at 21:46










          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @ValiRO yes exactly :)
            $endgroup$
            – John Doe
            Jan 12 at 23:49


















          • $begingroup$
            I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
            $endgroup$
            – Vali RO
            Jan 12 at 21:46










          • $begingroup$
            Thank you, I did it :)
            $endgroup$
            – Vali RO
            Jan 12 at 21:47










          • $begingroup$
            @ValiRO yes exactly :)
            $endgroup$
            – John Doe
            Jan 12 at 23:49
















          $begingroup$
          I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
          $endgroup$
          – Vali RO
          Jan 12 at 21:46




          $begingroup$
          I take u=e^x+x so u'=e^x+1 so the second integral is ln|u+1|
          $endgroup$
          – Vali RO
          Jan 12 at 21:46












          $begingroup$
          Thank you, I did it :)
          $endgroup$
          – Vali RO
          Jan 12 at 21:47




          $begingroup$
          Thank you, I did it :)
          $endgroup$
          – Vali RO
          Jan 12 at 21:47












          $begingroup$
          @ValiRO yes exactly :)
          $endgroup$
          – John Doe
          Jan 12 at 23:49




          $begingroup$
          @ValiRO yes exactly :)
          $endgroup$
          – John Doe
          Jan 12 at 23:49


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071417%2fintegrate-int-11-frac-xexx1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith