Is $ f(x):= frac{x}{ |x|^n }$ a gradient field?












4












$begingroup$


for $ 2 leq n $ let be



$ f: mathbb{R}^n backslash { 0 } rightarrow mathbb{R}^n $



$ f(x):= frac{x}{|x|^n} $ , $ xin mathbb{R}^n backslash { 0 } $



Is f a gradient field?



A vectorfield $ f $ ist a gradient field, if there is a function
$ f= nabla v $



$ left[ nabla f (x) = (frac{ partial f}{ partial x_1} (x),...,frac{ partial f}{ partial x_n} (x)) right] $



So, I need to find a function $v$ so that $ f= nabla v $ right?



If I look for the case $n=2 $
so $ f(x):= frac{x}{|x|^2} in mathbb{R}^n backslash { 0 } $



let be $ partial_j v(x)= frac{x_j}{|x|}$



then $v(x)= ln(|x|) $ and



$$ partial_j v(x)= frac{1}{|x|} frac{x_j}{|x|} = frac{x_j}{|x^2|} $$



Is this the right idea?
If yes, how can I proceed for larger $n$?
If no, what would you suggest?



Appreciate any help !










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    for $ 2 leq n $ let be



    $ f: mathbb{R}^n backslash { 0 } rightarrow mathbb{R}^n $



    $ f(x):= frac{x}{|x|^n} $ , $ xin mathbb{R}^n backslash { 0 } $



    Is f a gradient field?



    A vectorfield $ f $ ist a gradient field, if there is a function
    $ f= nabla v $



    $ left[ nabla f (x) = (frac{ partial f}{ partial x_1} (x),...,frac{ partial f}{ partial x_n} (x)) right] $



    So, I need to find a function $v$ so that $ f= nabla v $ right?



    If I look for the case $n=2 $
    so $ f(x):= frac{x}{|x|^2} in mathbb{R}^n backslash { 0 } $



    let be $ partial_j v(x)= frac{x_j}{|x|}$



    then $v(x)= ln(|x|) $ and



    $$ partial_j v(x)= frac{1}{|x|} frac{x_j}{|x|} = frac{x_j}{|x^2|} $$



    Is this the right idea?
    If yes, how can I proceed for larger $n$?
    If no, what would you suggest?



    Appreciate any help !










    share|cite|improve this question









    $endgroup$















      4












      4








      4





      $begingroup$


      for $ 2 leq n $ let be



      $ f: mathbb{R}^n backslash { 0 } rightarrow mathbb{R}^n $



      $ f(x):= frac{x}{|x|^n} $ , $ xin mathbb{R}^n backslash { 0 } $



      Is f a gradient field?



      A vectorfield $ f $ ist a gradient field, if there is a function
      $ f= nabla v $



      $ left[ nabla f (x) = (frac{ partial f}{ partial x_1} (x),...,frac{ partial f}{ partial x_n} (x)) right] $



      So, I need to find a function $v$ so that $ f= nabla v $ right?



      If I look for the case $n=2 $
      so $ f(x):= frac{x}{|x|^2} in mathbb{R}^n backslash { 0 } $



      let be $ partial_j v(x)= frac{x_j}{|x|}$



      then $v(x)= ln(|x|) $ and



      $$ partial_j v(x)= frac{1}{|x|} frac{x_j}{|x|} = frac{x_j}{|x^2|} $$



      Is this the right idea?
      If yes, how can I proceed for larger $n$?
      If no, what would you suggest?



      Appreciate any help !










      share|cite|improve this question









      $endgroup$




      for $ 2 leq n $ let be



      $ f: mathbb{R}^n backslash { 0 } rightarrow mathbb{R}^n $



      $ f(x):= frac{x}{|x|^n} $ , $ xin mathbb{R}^n backslash { 0 } $



      Is f a gradient field?



      A vectorfield $ f $ ist a gradient field, if there is a function
      $ f= nabla v $



      $ left[ nabla f (x) = (frac{ partial f}{ partial x_1} (x),...,frac{ partial f}{ partial x_n} (x)) right] $



      So, I need to find a function $v$ so that $ f= nabla v $ right?



      If I look for the case $n=2 $
      so $ f(x):= frac{x}{|x|^2} in mathbb{R}^n backslash { 0 } $



      let be $ partial_j v(x)= frac{x_j}{|x|}$



      then $v(x)= ln(|x|) $ and



      $$ partial_j v(x)= frac{1}{|x|} frac{x_j}{|x|} = frac{x_j}{|x^2|} $$



      Is this the right idea?
      If yes, how can I proceed for larger $n$?
      If no, what would you suggest?



      Appreciate any help !







      real-analysis multivariable-calculus vector-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 at 12:21









      constant94constant94

      6310




      6310






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Let's suppose that there exists some $V(x)$ such that $frac{d}{dx}V(x)=f(x)$.



          Therefore:



          $$int_a^yfrac{d}{dx}V(x)dx =int_a^yf(x) dx$$



          Applying the fundamental theorem of calculus gives:



          $$V(y)=int_a^y frac{x}{|x|^n} dx$$
          Now let's break into cases. Suppose we are only considering $x,a,y > 0$. Then, we are left with a really simple integral, namely:
          $$V(y)=int_a^y frac{x}{x^n} dx = int_a^y frac{1}{x^{n-1}} dx.$$



          Now, let's assume we are only considering $x, a, y < 0$. This also simplifies very nicely:



          $$V(y)=int_a^y frac{x}{(-x)^n} dx = (-1)^nint_a^y frac{1}{x^{n-1}} dx.$$



          So it seems that we have a definition for $V$.



          begin{cases}
          V(x) = frac{1}{2-n}x^{2-n} & x < 0 \
          V(x) = frac{1}{2-n}(-1)^n x^{2-n} & x>0
          end{cases}






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Your $f$ is a radial field and it depends only on the magnitude of your vector $r = |vec{r}|$ so it is of the form $$f(vec{r}) = frac{vec{r}}{r^n} = F(r)hat{r}$$ where $F(r) = frac1{r^{n-1}}$ and $hat{r}$ is the unit radial vector.



            Notice that for a scalar function $phi : mathbb{R}^n to mathbb{R}$ depending only on magnitude $r$ we have $$nabla phi(r) = phi'(r)nabla r = phi'(r)hat{r}$$



            since $nabla r = hat{r}$.



            Hence if $$phi(r) = int F(r),dr = -frac1{(n-2)r^{n-2}}$$
            then $f = nabla phi$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073173%2fis-fx-fracx-xn-a-gradient-field%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Let's suppose that there exists some $V(x)$ such that $frac{d}{dx}V(x)=f(x)$.



              Therefore:



              $$int_a^yfrac{d}{dx}V(x)dx =int_a^yf(x) dx$$



              Applying the fundamental theorem of calculus gives:



              $$V(y)=int_a^y frac{x}{|x|^n} dx$$
              Now let's break into cases. Suppose we are only considering $x,a,y > 0$. Then, we are left with a really simple integral, namely:
              $$V(y)=int_a^y frac{x}{x^n} dx = int_a^y frac{1}{x^{n-1}} dx.$$



              Now, let's assume we are only considering $x, a, y < 0$. This also simplifies very nicely:



              $$V(y)=int_a^y frac{x}{(-x)^n} dx = (-1)^nint_a^y frac{1}{x^{n-1}} dx.$$



              So it seems that we have a definition for $V$.



              begin{cases}
              V(x) = frac{1}{2-n}x^{2-n} & x < 0 \
              V(x) = frac{1}{2-n}(-1)^n x^{2-n} & x>0
              end{cases}






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                Let's suppose that there exists some $V(x)$ such that $frac{d}{dx}V(x)=f(x)$.



                Therefore:



                $$int_a^yfrac{d}{dx}V(x)dx =int_a^yf(x) dx$$



                Applying the fundamental theorem of calculus gives:



                $$V(y)=int_a^y frac{x}{|x|^n} dx$$
                Now let's break into cases. Suppose we are only considering $x,a,y > 0$. Then, we are left with a really simple integral, namely:
                $$V(y)=int_a^y frac{x}{x^n} dx = int_a^y frac{1}{x^{n-1}} dx.$$



                Now, let's assume we are only considering $x, a, y < 0$. This also simplifies very nicely:



                $$V(y)=int_a^y frac{x}{(-x)^n} dx = (-1)^nint_a^y frac{1}{x^{n-1}} dx.$$



                So it seems that we have a definition for $V$.



                begin{cases}
                V(x) = frac{1}{2-n}x^{2-n} & x < 0 \
                V(x) = frac{1}{2-n}(-1)^n x^{2-n} & x>0
                end{cases}






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Let's suppose that there exists some $V(x)$ such that $frac{d}{dx}V(x)=f(x)$.



                  Therefore:



                  $$int_a^yfrac{d}{dx}V(x)dx =int_a^yf(x) dx$$



                  Applying the fundamental theorem of calculus gives:



                  $$V(y)=int_a^y frac{x}{|x|^n} dx$$
                  Now let's break into cases. Suppose we are only considering $x,a,y > 0$. Then, we are left with a really simple integral, namely:
                  $$V(y)=int_a^y frac{x}{x^n} dx = int_a^y frac{1}{x^{n-1}} dx.$$



                  Now, let's assume we are only considering $x, a, y < 0$. This also simplifies very nicely:



                  $$V(y)=int_a^y frac{x}{(-x)^n} dx = (-1)^nint_a^y frac{1}{x^{n-1}} dx.$$



                  So it seems that we have a definition for $V$.



                  begin{cases}
                  V(x) = frac{1}{2-n}x^{2-n} & x < 0 \
                  V(x) = frac{1}{2-n}(-1)^n x^{2-n} & x>0
                  end{cases}






                  share|cite|improve this answer











                  $endgroup$



                  Let's suppose that there exists some $V(x)$ such that $frac{d}{dx}V(x)=f(x)$.



                  Therefore:



                  $$int_a^yfrac{d}{dx}V(x)dx =int_a^yf(x) dx$$



                  Applying the fundamental theorem of calculus gives:



                  $$V(y)=int_a^y frac{x}{|x|^n} dx$$
                  Now let's break into cases. Suppose we are only considering $x,a,y > 0$. Then, we are left with a really simple integral, namely:
                  $$V(y)=int_a^y frac{x}{x^n} dx = int_a^y frac{1}{x^{n-1}} dx.$$



                  Now, let's assume we are only considering $x, a, y < 0$. This also simplifies very nicely:



                  $$V(y)=int_a^y frac{x}{(-x)^n} dx = (-1)^nint_a^y frac{1}{x^{n-1}} dx.$$



                  So it seems that we have a definition for $V$.



                  begin{cases}
                  V(x) = frac{1}{2-n}x^{2-n} & x < 0 \
                  V(x) = frac{1}{2-n}(-1)^n x^{2-n} & x>0
                  end{cases}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 14 at 16:19

























                  answered Jan 14 at 15:46









                  CuhrazateeCuhrazatee

                  361110




                  361110























                      0












                      $begingroup$

                      Your $f$ is a radial field and it depends only on the magnitude of your vector $r = |vec{r}|$ so it is of the form $$f(vec{r}) = frac{vec{r}}{r^n} = F(r)hat{r}$$ where $F(r) = frac1{r^{n-1}}$ and $hat{r}$ is the unit radial vector.



                      Notice that for a scalar function $phi : mathbb{R}^n to mathbb{R}$ depending only on magnitude $r$ we have $$nabla phi(r) = phi'(r)nabla r = phi'(r)hat{r}$$



                      since $nabla r = hat{r}$.



                      Hence if $$phi(r) = int F(r),dr = -frac1{(n-2)r^{n-2}}$$
                      then $f = nabla phi$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Your $f$ is a radial field and it depends only on the magnitude of your vector $r = |vec{r}|$ so it is of the form $$f(vec{r}) = frac{vec{r}}{r^n} = F(r)hat{r}$$ where $F(r) = frac1{r^{n-1}}$ and $hat{r}$ is the unit radial vector.



                        Notice that for a scalar function $phi : mathbb{R}^n to mathbb{R}$ depending only on magnitude $r$ we have $$nabla phi(r) = phi'(r)nabla r = phi'(r)hat{r}$$



                        since $nabla r = hat{r}$.



                        Hence if $$phi(r) = int F(r),dr = -frac1{(n-2)r^{n-2}}$$
                        then $f = nabla phi$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Your $f$ is a radial field and it depends only on the magnitude of your vector $r = |vec{r}|$ so it is of the form $$f(vec{r}) = frac{vec{r}}{r^n} = F(r)hat{r}$$ where $F(r) = frac1{r^{n-1}}$ and $hat{r}$ is the unit radial vector.



                          Notice that for a scalar function $phi : mathbb{R}^n to mathbb{R}$ depending only on magnitude $r$ we have $$nabla phi(r) = phi'(r)nabla r = phi'(r)hat{r}$$



                          since $nabla r = hat{r}$.



                          Hence if $$phi(r) = int F(r),dr = -frac1{(n-2)r^{n-2}}$$
                          then $f = nabla phi$.






                          share|cite|improve this answer









                          $endgroup$



                          Your $f$ is a radial field and it depends only on the magnitude of your vector $r = |vec{r}|$ so it is of the form $$f(vec{r}) = frac{vec{r}}{r^n} = F(r)hat{r}$$ where $F(r) = frac1{r^{n-1}}$ and $hat{r}$ is the unit radial vector.



                          Notice that for a scalar function $phi : mathbb{R}^n to mathbb{R}$ depending only on magnitude $r$ we have $$nabla phi(r) = phi'(r)nabla r = phi'(r)hat{r}$$



                          since $nabla r = hat{r}$.



                          Hence if $$phi(r) = int F(r),dr = -frac1{(n-2)r^{n-2}}$$
                          then $f = nabla phi$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 14 at 15:56









                          mechanodroidmechanodroid

                          27.6k62447




                          27.6k62447






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073173%2fis-fx-fracx-xn-a-gradient-field%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter