Prove an inequality concerning Kullback-Leibler Divergence
$begingroup$
For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
$$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!
probability-theory machine-learning information-theory
$endgroup$
add a comment |
$begingroup$
For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
$$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!
probability-theory machine-learning information-theory
$endgroup$
add a comment |
$begingroup$
For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
$$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!
probability-theory machine-learning information-theory
$endgroup$
For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
$$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!
probability-theory machine-learning information-theory
probability-theory machine-learning information-theory
asked Jan 11 at 6:36
zbh2047zbh2047
356
356
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This computation appears in the study of variational inference. Note that
$$
begin{align}
log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
&= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
&geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
&= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
&triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
end{align}
$$
$endgroup$
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069536%2fprove-an-inequality-concerning-kullback-leibler-divergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This computation appears in the study of variational inference. Note that
$$
begin{align}
log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
&= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
&geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
&= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
&triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
end{align}
$$
$endgroup$
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
add a comment |
$begingroup$
This computation appears in the study of variational inference. Note that
$$
begin{align}
log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
&= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
&geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
&= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
&triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
end{align}
$$
$endgroup$
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
add a comment |
$begingroup$
This computation appears in the study of variational inference. Note that
$$
begin{align}
log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
&= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
&geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
&= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
&triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
end{align}
$$
$endgroup$
This computation appears in the study of variational inference. Note that
$$
begin{align}
log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
&= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
&geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
&= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
&triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
end{align}
$$
answered Jan 11 at 7:30
SteliosStelios
2,141279
2,141279
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
add a comment |
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
$begingroup$
To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
$endgroup$
– Aaron
Jan 11 at 15:53
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069536%2fprove-an-inequality-concerning-kullback-leibler-divergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown