Prove an inequality concerning Kullback-Leibler Divergence












1












$begingroup$


For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
$$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
    $$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
    I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
      $$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
      I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!










      share|cite|improve this question









      $endgroup$




      For any distribution $P$ and $Q$ on $mathcal{X}$ and any function $f:mathcal{X} rightarrow mathbb{R}$, prove the following inequality:
      $$mathbb{E}_{xsim Q}[f(x)]le ln mathbb{E}_{xsim P}[exp(f(x))]+KL(Q||P)$$
      I have no idea on transforming the expectation to a Kullback-Leibler Divergence at all. Is there a simple proof on the inequality (for example, just using the knowledge of probability theory and calculas)? Thank you!







      probability-theory machine-learning information-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 11 at 6:36









      zbh2047zbh2047

      356




      356






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          This computation appears in the study of variational inference. Note that
          $$
          begin{align}
          log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
          &= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
          &geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
          &= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
          &triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
          end{align}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
            $endgroup$
            – Aaron
            Jan 11 at 15:53











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069536%2fprove-an-inequality-concerning-kullback-leibler-divergence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          This computation appears in the study of variational inference. Note that
          $$
          begin{align}
          log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
          &= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
          &geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
          &= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
          &triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
          end{align}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
            $endgroup$
            – Aaron
            Jan 11 at 15:53
















          2












          $begingroup$

          This computation appears in the study of variational inference. Note that
          $$
          begin{align}
          log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
          &= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
          &geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
          &= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
          &triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
          end{align}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
            $endgroup$
            – Aaron
            Jan 11 at 15:53














          2












          2








          2





          $begingroup$

          This computation appears in the study of variational inference. Note that
          $$
          begin{align}
          log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
          &= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
          &geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
          &= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
          &triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
          end{align}
          $$






          share|cite|improve this answer









          $endgroup$



          This computation appears in the study of variational inference. Note that
          $$
          begin{align}
          log mathbb{E}_{xsim P}(f(x)) &triangleq log int_x p(x) f(x) dx\
          &= log int_x q(x) frac{p(x)}{q(x)}f(x) dx\
          &geq int_x q(x) log left(frac{p(x)}{q(x)}f(x) right)dx\
          &= int_x q(x) log f(x) dx +int_x q(x) log left(frac{p(x)}{q(x)} right)dx\
          &triangleq mathbb{E}_{xsim Q}(log(f(x)))-KL(Q||P),
          end{align}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 7:30









          SteliosStelios

          2,141279




          2,141279












          • $begingroup$
            To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
            $endgroup$
            – Aaron
            Jan 11 at 15:53


















          • $begingroup$
            To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
            $endgroup$
            – Aaron
            Jan 11 at 15:53
















          $begingroup$
          To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
          $endgroup$
          – Aaron
          Jan 11 at 15:53




          $begingroup$
          To note, the inequality is due to Jensen's, with concavity of $log(cdot)$.
          $endgroup$
          – Aaron
          Jan 11 at 15:53


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069536%2fprove-an-inequality-concerning-kullback-leibler-divergence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith