Questions on diagonalization












0












$begingroup$



  1. We have "$lambda in K$ is an eigenvalue of $A in M_n(K)$ $iff chi_A(lambda)=det(lambda I_n-A)=0$", and this analogue: "Consider an $n$-dimensional $K$-vector space $V$ and $f:Vto V$ a linear operator on $V$. $lambda in K$ is an eigenvalue of $fiff chi_f(lambda)=det(lambda mathbf{1}-f)=0$".


The proof of the second statements uses $0=det(lambda I_n-A)=det(lambda mathbf{1} -f)$ (with $A$ the matrix representation of $f$), but I can't really see where the equality come from.





  1. $Ain M_n(K)$ is diagonalizable if and only if there exists a matrix $Pin GL_n(K)$ such that $P^{-1}AP$ is a diagonal matrix.




This is the proof:



$Rightarrow$:Consider the standard basis $mathcal{B}$ for $K^n$. Suppose that $A$ (and therefor $L_A$) is diagonalizable. Then there is a basis $mathcal{B'}={b_1,dots,b_n}$ consisting of eigenvectors of $A$. Define $P$, the transition matrix from $mathcal{B}$ to $mathcal{B'}$; Then $L_{P^{-1}AP}$ maps $b_i$ to $lambda_i b_i$. Conclusion: $P^{-1}AP = operatorname{diag}(lambda_1dots,lambda_n)$.



$Leftarrow$: Suppose there is a $P in GL_n(K)$ such that $P^{-1}AP$ is diagonal, and consider the basis $mathcal{B'} = {Pe_1,dots,Pe_n}$ of $K^n$. It is clear that the matrix of $L_A$ $(A_{mathcal{B},mathcal{B}})$ will be the diagonal matrix $P^{-1}AP$.



I don't understand the sentences that are put in bold. Can someone help me see the logic behind it.



Thanks in advance.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$



    1. We have "$lambda in K$ is an eigenvalue of $A in M_n(K)$ $iff chi_A(lambda)=det(lambda I_n-A)=0$", and this analogue: "Consider an $n$-dimensional $K$-vector space $V$ and $f:Vto V$ a linear operator on $V$. $lambda in K$ is an eigenvalue of $fiff chi_f(lambda)=det(lambda mathbf{1}-f)=0$".


    The proof of the second statements uses $0=det(lambda I_n-A)=det(lambda mathbf{1} -f)$ (with $A$ the matrix representation of $f$), but I can't really see where the equality come from.





    1. $Ain M_n(K)$ is diagonalizable if and only if there exists a matrix $Pin GL_n(K)$ such that $P^{-1}AP$ is a diagonal matrix.




    This is the proof:



    $Rightarrow$:Consider the standard basis $mathcal{B}$ for $K^n$. Suppose that $A$ (and therefor $L_A$) is diagonalizable. Then there is a basis $mathcal{B'}={b_1,dots,b_n}$ consisting of eigenvectors of $A$. Define $P$, the transition matrix from $mathcal{B}$ to $mathcal{B'}$; Then $L_{P^{-1}AP}$ maps $b_i$ to $lambda_i b_i$. Conclusion: $P^{-1}AP = operatorname{diag}(lambda_1dots,lambda_n)$.



    $Leftarrow$: Suppose there is a $P in GL_n(K)$ such that $P^{-1}AP$ is diagonal, and consider the basis $mathcal{B'} = {Pe_1,dots,Pe_n}$ of $K^n$. It is clear that the matrix of $L_A$ $(A_{mathcal{B},mathcal{B}})$ will be the diagonal matrix $P^{-1}AP$.



    I don't understand the sentences that are put in bold. Can someone help me see the logic behind it.



    Thanks in advance.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$



      1. We have "$lambda in K$ is an eigenvalue of $A in M_n(K)$ $iff chi_A(lambda)=det(lambda I_n-A)=0$", and this analogue: "Consider an $n$-dimensional $K$-vector space $V$ and $f:Vto V$ a linear operator on $V$. $lambda in K$ is an eigenvalue of $fiff chi_f(lambda)=det(lambda mathbf{1}-f)=0$".


      The proof of the second statements uses $0=det(lambda I_n-A)=det(lambda mathbf{1} -f)$ (with $A$ the matrix representation of $f$), but I can't really see where the equality come from.





      1. $Ain M_n(K)$ is diagonalizable if and only if there exists a matrix $Pin GL_n(K)$ such that $P^{-1}AP$ is a diagonal matrix.




      This is the proof:



      $Rightarrow$:Consider the standard basis $mathcal{B}$ for $K^n$. Suppose that $A$ (and therefor $L_A$) is diagonalizable. Then there is a basis $mathcal{B'}={b_1,dots,b_n}$ consisting of eigenvectors of $A$. Define $P$, the transition matrix from $mathcal{B}$ to $mathcal{B'}$; Then $L_{P^{-1}AP}$ maps $b_i$ to $lambda_i b_i$. Conclusion: $P^{-1}AP = operatorname{diag}(lambda_1dots,lambda_n)$.



      $Leftarrow$: Suppose there is a $P in GL_n(K)$ such that $P^{-1}AP$ is diagonal, and consider the basis $mathcal{B'} = {Pe_1,dots,Pe_n}$ of $K^n$. It is clear that the matrix of $L_A$ $(A_{mathcal{B},mathcal{B}})$ will be the diagonal matrix $P^{-1}AP$.



      I don't understand the sentences that are put in bold. Can someone help me see the logic behind it.



      Thanks in advance.










      share|cite|improve this question









      $endgroup$





      1. We have "$lambda in K$ is an eigenvalue of $A in M_n(K)$ $iff chi_A(lambda)=det(lambda I_n-A)=0$", and this analogue: "Consider an $n$-dimensional $K$-vector space $V$ and $f:Vto V$ a linear operator on $V$. $lambda in K$ is an eigenvalue of $fiff chi_f(lambda)=det(lambda mathbf{1}-f)=0$".


      The proof of the second statements uses $0=det(lambda I_n-A)=det(lambda mathbf{1} -f)$ (with $A$ the matrix representation of $f$), but I can't really see where the equality come from.





      1. $Ain M_n(K)$ is diagonalizable if and only if there exists a matrix $Pin GL_n(K)$ such that $P^{-1}AP$ is a diagonal matrix.




      This is the proof:



      $Rightarrow$:Consider the standard basis $mathcal{B}$ for $K^n$. Suppose that $A$ (and therefor $L_A$) is diagonalizable. Then there is a basis $mathcal{B'}={b_1,dots,b_n}$ consisting of eigenvectors of $A$. Define $P$, the transition matrix from $mathcal{B}$ to $mathcal{B'}$; Then $L_{P^{-1}AP}$ maps $b_i$ to $lambda_i b_i$. Conclusion: $P^{-1}AP = operatorname{diag}(lambda_1dots,lambda_n)$.



      $Leftarrow$: Suppose there is a $P in GL_n(K)$ such that $P^{-1}AP$ is diagonal, and consider the basis $mathcal{B'} = {Pe_1,dots,Pe_n}$ of $K^n$. It is clear that the matrix of $L_A$ $(A_{mathcal{B},mathcal{B}})$ will be the diagonal matrix $P^{-1}AP$.



      I don't understand the sentences that are put in bold. Can someone help me see the logic behind it.



      Thanks in advance.







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 11 at 8:58









      ZacharyZachary

      1559




      1559






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$


          1. Since $lambda$ is an eigenvalue of $A$, there is a non-zero vector $v$ such that $Av=lambda v$. But$$Av=lambda viff(lambdaoperatorname{Id}-A).v=0impliesdet(lambdaoperatorname{Id}-A)=0.$$

          2. If $mathcal{B}={e_1,ldots,e_n}$, then the entries of the $i$th column of $P$ are the coordinates of $b_i$ with respect to $mathcal B$. So, $(AP).e_i=A.b_i=lambda_ib_i$. On the other hand, $P^{-1}.b_i=e_i$, and so $(P^{-1}AP).e_i=lambda_ie_i$. And if $P^{-1}AP$ is diagonal, then $(P^{-1}AP)e_i=lambda_ie_i$. But$$(P^{-1}AP)e_i=lambda_ie_iiff A.(Pe_i)=lambda_i(Pe_i).$$So, yes, the matrix $L_A$ with respect to ${Pe_1,ldots,Pe_n}$ will be diagonal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
            $endgroup$
            – Zachary
            Jan 11 at 9:29










          • $begingroup$
            1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
            $endgroup$
            – José Carlos Santos
            Jan 11 at 9:44











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069623%2fquestions-on-diagonalization%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$


          1. Since $lambda$ is an eigenvalue of $A$, there is a non-zero vector $v$ such that $Av=lambda v$. But$$Av=lambda viff(lambdaoperatorname{Id}-A).v=0impliesdet(lambdaoperatorname{Id}-A)=0.$$

          2. If $mathcal{B}={e_1,ldots,e_n}$, then the entries of the $i$th column of $P$ are the coordinates of $b_i$ with respect to $mathcal B$. So, $(AP).e_i=A.b_i=lambda_ib_i$. On the other hand, $P^{-1}.b_i=e_i$, and so $(P^{-1}AP).e_i=lambda_ie_i$. And if $P^{-1}AP$ is diagonal, then $(P^{-1}AP)e_i=lambda_ie_i$. But$$(P^{-1}AP)e_i=lambda_ie_iiff A.(Pe_i)=lambda_i(Pe_i).$$So, yes, the matrix $L_A$ with respect to ${Pe_1,ldots,Pe_n}$ will be diagonal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
            $endgroup$
            – Zachary
            Jan 11 at 9:29










          • $begingroup$
            1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
            $endgroup$
            – José Carlos Santos
            Jan 11 at 9:44
















          0












          $begingroup$


          1. Since $lambda$ is an eigenvalue of $A$, there is a non-zero vector $v$ such that $Av=lambda v$. But$$Av=lambda viff(lambdaoperatorname{Id}-A).v=0impliesdet(lambdaoperatorname{Id}-A)=0.$$

          2. If $mathcal{B}={e_1,ldots,e_n}$, then the entries of the $i$th column of $P$ are the coordinates of $b_i$ with respect to $mathcal B$. So, $(AP).e_i=A.b_i=lambda_ib_i$. On the other hand, $P^{-1}.b_i=e_i$, and so $(P^{-1}AP).e_i=lambda_ie_i$. And if $P^{-1}AP$ is diagonal, then $(P^{-1}AP)e_i=lambda_ie_i$. But$$(P^{-1}AP)e_i=lambda_ie_iiff A.(Pe_i)=lambda_i(Pe_i).$$So, yes, the matrix $L_A$ with respect to ${Pe_1,ldots,Pe_n}$ will be diagonal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
            $endgroup$
            – Zachary
            Jan 11 at 9:29










          • $begingroup$
            1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
            $endgroup$
            – José Carlos Santos
            Jan 11 at 9:44














          0












          0








          0





          $begingroup$


          1. Since $lambda$ is an eigenvalue of $A$, there is a non-zero vector $v$ such that $Av=lambda v$. But$$Av=lambda viff(lambdaoperatorname{Id}-A).v=0impliesdet(lambdaoperatorname{Id}-A)=0.$$

          2. If $mathcal{B}={e_1,ldots,e_n}$, then the entries of the $i$th column of $P$ are the coordinates of $b_i$ with respect to $mathcal B$. So, $(AP).e_i=A.b_i=lambda_ib_i$. On the other hand, $P^{-1}.b_i=e_i$, and so $(P^{-1}AP).e_i=lambda_ie_i$. And if $P^{-1}AP$ is diagonal, then $(P^{-1}AP)e_i=lambda_ie_i$. But$$(P^{-1}AP)e_i=lambda_ie_iiff A.(Pe_i)=lambda_i(Pe_i).$$So, yes, the matrix $L_A$ with respect to ${Pe_1,ldots,Pe_n}$ will be diagonal.






          share|cite|improve this answer









          $endgroup$




          1. Since $lambda$ is an eigenvalue of $A$, there is a non-zero vector $v$ such that $Av=lambda v$. But$$Av=lambda viff(lambdaoperatorname{Id}-A).v=0impliesdet(lambdaoperatorname{Id}-A)=0.$$

          2. If $mathcal{B}={e_1,ldots,e_n}$, then the entries of the $i$th column of $P$ are the coordinates of $b_i$ with respect to $mathcal B$. So, $(AP).e_i=A.b_i=lambda_ib_i$. On the other hand, $P^{-1}.b_i=e_i$, and so $(P^{-1}AP).e_i=lambda_ie_i$. And if $P^{-1}AP$ is diagonal, then $(P^{-1}AP)e_i=lambda_ie_i$. But$$(P^{-1}AP)e_i=lambda_ie_iiff A.(Pe_i)=lambda_i(Pe_i).$$So, yes, the matrix $L_A$ with respect to ${Pe_1,ldots,Pe_n}$ will be diagonal.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 9:13









          José Carlos SantosJosé Carlos Santos

          160k22126232




          160k22126232












          • $begingroup$
            Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
            $endgroup$
            – Zachary
            Jan 11 at 9:29










          • $begingroup$
            1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
            $endgroup$
            – José Carlos Santos
            Jan 11 at 9:44


















          • $begingroup$
            Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
            $endgroup$
            – Zachary
            Jan 11 at 9:29










          • $begingroup$
            1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
            $endgroup$
            – José Carlos Santos
            Jan 11 at 9:44
















          $begingroup$
          Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
          $endgroup$
          – Zachary
          Jan 11 at 9:29




          $begingroup$
          Thank you so much! Just two quick questions: 1) I see why $det(lambda I_n - A) = 0$, but why is $det(lambda I_n - A) = det(lambda mathbf{1} - f)$? 2) You say that $(P^{-1} A P)cdot e_i = lambda_i e_i $, does this also hold for the basis elements $b_i$ in $mathcal{B'}$?
          $endgroup$
          – Zachary
          Jan 11 at 9:29












          $begingroup$
          1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
          $endgroup$
          – José Carlos Santos
          Jan 11 at 9:44




          $begingroup$
          1) $mathbf{1}$ means $operatorname{Id}$. 2) There are no $b_i$'s in this part of the proof.
          $endgroup$
          – José Carlos Santos
          Jan 11 at 9:44


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069623%2fquestions-on-diagonalization%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith