Show that for each Markov kernel admiting a density there is a corresponding reverse kernel
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
$mu$ be a probability measure on $(E_1,mathcal E_1)$
Assume $kappa$ has a density $f:E_1times E_2to[0,infty)$ with respect to a measure $lambda$ on $(E_2,mathcal E_2)$, i.e. $$kappa(x,B)=int_Bf(x,y):lambda({rm d}y)tag1;;;text{for all }(x,B)in E_1timesmathcal E_2.$$ Note that $$c(y):=intmu({rm d}x)f(x,y);;;text{for }yinmathcal E_2.$$ is $mathcal E_2$-measurable and hence $N_1:=left{c=0right}inmathcal E_2$. It's easy to see that$^1$ $$(mukappa)(N)=0.tag2$$
Now, let $N_2:=left{c=inftyright}$. Again, $N_2inmathcal E_2$, but are we able to show $(mukappa)(N_2)=0$?
My idea was to show that $$0leint c:{rm d}(mukappa)<inftytag3,$$ but I wasn't able to do so. Using Fubini's theorem we obtain $$int c:{rm d}(mukappa)=intmu({rm d}tilde x)intmu({rm d}x)intlambda({rm d}y)f(tilde x,y)f(x,y)tag4$$ and we know that $$intlambda({rm d}y)f(x,y)=1;;;text{for all }xin E_1tag5.$$ How can we conclude?
$^1$ $mukappa$ denotes the composition of $mu$ and $kappa$.
probability-theory measure-theory markov-chains markov-process
$endgroup$
add a comment |
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
$mu$ be a probability measure on $(E_1,mathcal E_1)$
Assume $kappa$ has a density $f:E_1times E_2to[0,infty)$ with respect to a measure $lambda$ on $(E_2,mathcal E_2)$, i.e. $$kappa(x,B)=int_Bf(x,y):lambda({rm d}y)tag1;;;text{for all }(x,B)in E_1timesmathcal E_2.$$ Note that $$c(y):=intmu({rm d}x)f(x,y);;;text{for }yinmathcal E_2.$$ is $mathcal E_2$-measurable and hence $N_1:=left{c=0right}inmathcal E_2$. It's easy to see that$^1$ $$(mukappa)(N)=0.tag2$$
Now, let $N_2:=left{c=inftyright}$. Again, $N_2inmathcal E_2$, but are we able to show $(mukappa)(N_2)=0$?
My idea was to show that $$0leint c:{rm d}(mukappa)<inftytag3,$$ but I wasn't able to do so. Using Fubini's theorem we obtain $$int c:{rm d}(mukappa)=intmu({rm d}tilde x)intmu({rm d}x)intlambda({rm d}y)f(tilde x,y)f(x,y)tag4$$ and we know that $$intlambda({rm d}y)f(x,y)=1;;;text{for all }xin E_1tag5.$$ How can we conclude?
$^1$ $mukappa$ denotes the composition of $mu$ and $kappa$.
probability-theory measure-theory markov-chains markov-process
$endgroup$
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19
add a comment |
$begingroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
$mu$ be a probability measure on $(E_1,mathcal E_1)$
Assume $kappa$ has a density $f:E_1times E_2to[0,infty)$ with respect to a measure $lambda$ on $(E_2,mathcal E_2)$, i.e. $$kappa(x,B)=int_Bf(x,y):lambda({rm d}y)tag1;;;text{for all }(x,B)in E_1timesmathcal E_2.$$ Note that $$c(y):=intmu({rm d}x)f(x,y);;;text{for }yinmathcal E_2.$$ is $mathcal E_2$-measurable and hence $N_1:=left{c=0right}inmathcal E_2$. It's easy to see that$^1$ $$(mukappa)(N)=0.tag2$$
Now, let $N_2:=left{c=inftyright}$. Again, $N_2inmathcal E_2$, but are we able to show $(mukappa)(N_2)=0$?
My idea was to show that $$0leint c:{rm d}(mukappa)<inftytag3,$$ but I wasn't able to do so. Using Fubini's theorem we obtain $$int c:{rm d}(mukappa)=intmu({rm d}tilde x)intmu({rm d}x)intlambda({rm d}y)f(tilde x,y)f(x,y)tag4$$ and we know that $$intlambda({rm d}y)f(x,y)=1;;;text{for all }xin E_1tag5.$$ How can we conclude?
$^1$ $mukappa$ denotes the composition of $mu$ and $kappa$.
probability-theory measure-theory markov-chains markov-process
$endgroup$
Let
$(E_i,mathcal E_i)$ be a measurable space
$kappa$ be a Markov kernel with source $(E_1,mathcal E_1)$ and target $(E_2,mathcal E_2)$
$mu$ be a probability measure on $(E_1,mathcal E_1)$
Assume $kappa$ has a density $f:E_1times E_2to[0,infty)$ with respect to a measure $lambda$ on $(E_2,mathcal E_2)$, i.e. $$kappa(x,B)=int_Bf(x,y):lambda({rm d}y)tag1;;;text{for all }(x,B)in E_1timesmathcal E_2.$$ Note that $$c(y):=intmu({rm d}x)f(x,y);;;text{for }yinmathcal E_2.$$ is $mathcal E_2$-measurable and hence $N_1:=left{c=0right}inmathcal E_2$. It's easy to see that$^1$ $$(mukappa)(N)=0.tag2$$
Now, let $N_2:=left{c=inftyright}$. Again, $N_2inmathcal E_2$, but are we able to show $(mukappa)(N_2)=0$?
My idea was to show that $$0leint c:{rm d}(mukappa)<inftytag3,$$ but I wasn't able to do so. Using Fubini's theorem we obtain $$int c:{rm d}(mukappa)=intmu({rm d}tilde x)intmu({rm d}x)intlambda({rm d}y)f(tilde x,y)f(x,y)tag4$$ and we know that $$intlambda({rm d}y)f(x,y)=1;;;text{for all }xin E_1tag5.$$ How can we conclude?
$^1$ $mukappa$ denotes the composition of $mu$ and $kappa$.
probability-theory measure-theory markov-chains markov-process
probability-theory measure-theory markov-chains markov-process
edited Jan 12 at 22:50
0xbadf00d
asked Jan 12 at 19:17
0xbadf00d0xbadf00d
1,90941531
1,90941531
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19
add a comment |
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071271%2fshow-that-for-each-markov-kernel-admiting-a-density-there-is-a-corresponding-rev%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071271%2fshow-that-for-each-markov-kernel-admiting-a-density-there-is-a-corresponding-rev%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The claim would allow us to conclude that $$overleftarrowkappa_mu(y,;cdot;):=frac{f(;cdot;,y)mu}{mu f(;cdot;,y)};;;text{for }yin E_2$$ is a reverse kernel with respect to $(mu,kappa)$.
$endgroup$
– 0xbadf00d
Jan 12 at 19:19