trigonometric integral with tangent












3












$begingroup$


$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
    $endgroup$
    – John Doe
    Jan 12 at 20:09










  • $begingroup$
    Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
    $endgroup$
    – Michael Rozenberg
    Jan 12 at 20:11












  • $begingroup$
    Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 20:17
















3












$begingroup$


$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
    $endgroup$
    – John Doe
    Jan 12 at 20:09










  • $begingroup$
    Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
    $endgroup$
    – Michael Rozenberg
    Jan 12 at 20:11












  • $begingroup$
    Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 20:17














3












3








3


1



$begingroup$


$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.










share|cite|improve this question











$endgroup$




$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.







calculus integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 19:52









Bernard

121k740116




121k740116










asked Jan 12 at 19:49









GaboruGaboru

877




877












  • $begingroup$
    Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
    $endgroup$
    – John Doe
    Jan 12 at 20:09










  • $begingroup$
    Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
    $endgroup$
    – Michael Rozenberg
    Jan 12 at 20:11












  • $begingroup$
    Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 20:17


















  • $begingroup$
    Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
    $endgroup$
    – John Doe
    Jan 12 at 20:09










  • $begingroup$
    Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
    $endgroup$
    – Michael Rozenberg
    Jan 12 at 20:11












  • $begingroup$
    Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
    $endgroup$
    – Viktor Glombik
    Jan 12 at 20:17
















$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09




$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09












$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11






$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11














$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17




$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17










3 Answers
3






active

oldest

votes


















1












$begingroup$

I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}



If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}

giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.



    Now let's consider your integral.



    Making a trigonometric substitution allows us to consider instead the following integrand:
    $$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
    Notice that $s$ satisfies the property
    $$s=sqrt[3]{2x-3s}$$
    or
    $$s^3+3s=2x$$
    If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
    $$2t=x^3+3x$$
    Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
    $$T(x)=frac{x^4+6x^2}{8}$$
    and so the antiderivative of $s$ is given by
    $$S(x)=T(s(x))-xs(x)$$
    where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
    $$T(s(tan(x)))-tan(x)s(tan(x))$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
      $endgroup$
      – DavidG
      Jan 13 at 0:00






    • 1




      $begingroup$
      @DavidG Not that I know of. I just worked it out from scratch.
      $endgroup$
      – Frpzzd
      Jan 13 at 0:36










    • $begingroup$
      How did you get that expresion of s(x) ?
      $endgroup$
      – Gaboru
      Jan 13 at 1:36



















    0












    $begingroup$

    Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
    $$cos(x)=frac{1-t^2}{1+t^2}$$
    $$dx=frac{2dt}{1+t^2}$$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      NONONONONO it makes things wayyyyy worse
      $endgroup$
      – clathratus
      Jan 12 at 20:49










    • $begingroup$
      This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
      $endgroup$
      – John Doe
      Jan 12 at 21:27










    • $begingroup$
      Now i would substitute the roots.
      $endgroup$
      – Dr. Sonnhard Graubner
      Jan 12 at 21:35











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071308%2ftrigonometric-integral-with-tangent%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    I will use integration by parts twice. First we write
    begin{align}
    I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
    &= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
    end{align}



    If we let
    $$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
    and
    $$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
    then obsereve that
    $$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
    So for the integral we have
    begin{align}
    I &= int sec^2 x cdot f(x) , dx\
    &= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
    &= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
    &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
    &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
    &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
    end{align}

    giving
    $$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
    or
    begin{align}
    I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
    & qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
    end{align}






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      I will use integration by parts twice. First we write
      begin{align}
      I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
      &= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
      end{align}



      If we let
      $$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
      and
      $$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
      then obsereve that
      $$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
      So for the integral we have
      begin{align}
      I &= int sec^2 x cdot f(x) , dx\
      &= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
      &= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
      &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
      &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
      &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
      end{align}

      giving
      $$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
      or
      begin{align}
      I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
      & qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
      end{align}






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        I will use integration by parts twice. First we write
        begin{align}
        I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
        &= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
        end{align}



        If we let
        $$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
        and
        $$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
        then obsereve that
        $$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
        So for the integral we have
        begin{align}
        I &= int sec^2 x cdot f(x) , dx\
        &= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
        &= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
        end{align}

        giving
        $$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
        or
        begin{align}
        I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
        & qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
        end{align}






        share|cite|improve this answer









        $endgroup$



        I will use integration by parts twice. First we write
        begin{align}
        I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
        &= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
        end{align}



        If we let
        $$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
        and
        $$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
        then obsereve that
        $$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
        So for the integral we have
        begin{align}
        I &= int sec^2 x cdot f(x) , dx\
        &= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
        &= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
        &= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
        end{align}

        giving
        $$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
        or
        begin{align}
        I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
        & qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 13 at 9:48









        omegadotomegadot

        5,8372728




        5,8372728























            3












            $begingroup$

            First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.



            Now let's consider your integral.



            Making a trigonometric substitution allows us to consider instead the following integrand:
            $$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
            Notice that $s$ satisfies the property
            $$s=sqrt[3]{2x-3s}$$
            or
            $$s^3+3s=2x$$
            If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
            $$2t=x^3+3x$$
            Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
            $$T(x)=frac{x^4+6x^2}{8}$$
            and so the antiderivative of $s$ is given by
            $$S(x)=T(s(x))-xs(x)$$
            where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
            $$T(s(tan(x)))-tan(x)s(tan(x))$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
              $endgroup$
              – DavidG
              Jan 13 at 0:00






            • 1




              $begingroup$
              @DavidG Not that I know of. I just worked it out from scratch.
              $endgroup$
              – Frpzzd
              Jan 13 at 0:36










            • $begingroup$
              How did you get that expresion of s(x) ?
              $endgroup$
              – Gaboru
              Jan 13 at 1:36
















            3












            $begingroup$

            First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.



            Now let's consider your integral.



            Making a trigonometric substitution allows us to consider instead the following integrand:
            $$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
            Notice that $s$ satisfies the property
            $$s=sqrt[3]{2x-3s}$$
            or
            $$s^3+3s=2x$$
            If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
            $$2t=x^3+3x$$
            Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
            $$T(x)=frac{x^4+6x^2}{8}$$
            and so the antiderivative of $s$ is given by
            $$S(x)=T(s(x))-xs(x)$$
            where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
            $$T(s(tan(x)))-tan(x)s(tan(x))$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
              $endgroup$
              – DavidG
              Jan 13 at 0:00






            • 1




              $begingroup$
              @DavidG Not that I know of. I just worked it out from scratch.
              $endgroup$
              – Frpzzd
              Jan 13 at 0:36










            • $begingroup$
              How did you get that expresion of s(x) ?
              $endgroup$
              – Gaboru
              Jan 13 at 1:36














            3












            3








            3





            $begingroup$

            First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.



            Now let's consider your integral.



            Making a trigonometric substitution allows us to consider instead the following integrand:
            $$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
            Notice that $s$ satisfies the property
            $$s=sqrt[3]{2x-3s}$$
            or
            $$s^3+3s=2x$$
            If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
            $$2t=x^3+3x$$
            Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
            $$T(x)=frac{x^4+6x^2}{8}$$
            and so the antiderivative of $s$ is given by
            $$S(x)=T(s(x))-xs(x)$$
            where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
            $$T(s(tan(x)))-tan(x)s(tan(x))$$






            share|cite|improve this answer









            $endgroup$



            First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.



            Now let's consider your integral.



            Making a trigonometric substitution allows us to consider instead the following integrand:
            $$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
            Notice that $s$ satisfies the property
            $$s=sqrt[3]{2x-3s}$$
            or
            $$s^3+3s=2x$$
            If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
            $$2t=x^3+3x$$
            Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
            $$T(x)=frac{x^4+6x^2}{8}$$
            and so the antiderivative of $s$ is given by
            $$S(x)=T(s(x))-xs(x)$$
            where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
            $$T(s(tan(x)))-tan(x)s(tan(x))$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 12 at 20:17









            FrpzzdFrpzzd

            23k841109




            23k841109












            • $begingroup$
              Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
              $endgroup$
              – DavidG
              Jan 13 at 0:00






            • 1




              $begingroup$
              @DavidG Not that I know of. I just worked it out from scratch.
              $endgroup$
              – Frpzzd
              Jan 13 at 0:36










            • $begingroup$
              How did you get that expresion of s(x) ?
              $endgroup$
              – Gaboru
              Jan 13 at 1:36


















            • $begingroup$
              Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
              $endgroup$
              – DavidG
              Jan 13 at 0:00






            • 1




              $begingroup$
              @DavidG Not that I know of. I just worked it out from scratch.
              $endgroup$
              – Frpzzd
              Jan 13 at 0:36










            • $begingroup$
              How did you get that expresion of s(x) ?
              $endgroup$
              – Gaboru
              Jan 13 at 1:36
















            $begingroup$
            Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
            $endgroup$
            – DavidG
            Jan 13 at 0:00




            $begingroup$
            Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
            $endgroup$
            – DavidG
            Jan 13 at 0:00




            1




            1




            $begingroup$
            @DavidG Not that I know of. I just worked it out from scratch.
            $endgroup$
            – Frpzzd
            Jan 13 at 0:36




            $begingroup$
            @DavidG Not that I know of. I just worked it out from scratch.
            $endgroup$
            – Frpzzd
            Jan 13 at 0:36












            $begingroup$
            How did you get that expresion of s(x) ?
            $endgroup$
            – Gaboru
            Jan 13 at 1:36




            $begingroup$
            How did you get that expresion of s(x) ?
            $endgroup$
            – Gaboru
            Jan 13 at 1:36











            0












            $begingroup$

            Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
            $$cos(x)=frac{1-t^2}{1+t^2}$$
            $$dx=frac{2dt}{1+t^2}$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              NONONONONO it makes things wayyyyy worse
              $endgroup$
              – clathratus
              Jan 12 at 20:49










            • $begingroup$
              This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
              $endgroup$
              – John Doe
              Jan 12 at 21:27










            • $begingroup$
              Now i would substitute the roots.
              $endgroup$
              – Dr. Sonnhard Graubner
              Jan 12 at 21:35
















            0












            $begingroup$

            Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
            $$cos(x)=frac{1-t^2}{1+t^2}$$
            $$dx=frac{2dt}{1+t^2}$$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              NONONONONO it makes things wayyyyy worse
              $endgroup$
              – clathratus
              Jan 12 at 20:49










            • $begingroup$
              This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
              $endgroup$
              – John Doe
              Jan 12 at 21:27










            • $begingroup$
              Now i would substitute the roots.
              $endgroup$
              – Dr. Sonnhard Graubner
              Jan 12 at 21:35














            0












            0








            0





            $begingroup$

            Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
            $$cos(x)=frac{1-t^2}{1+t^2}$$
            $$dx=frac{2dt}{1+t^2}$$






            share|cite|improve this answer









            $endgroup$



            Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
            $$cos(x)=frac{1-t^2}{1+t^2}$$
            $$dx=frac{2dt}{1+t^2}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 12 at 20:19









            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

            75.2k42865




            75.2k42865








            • 1




              $begingroup$
              NONONONONO it makes things wayyyyy worse
              $endgroup$
              – clathratus
              Jan 12 at 20:49










            • $begingroup$
              This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
              $endgroup$
              – John Doe
              Jan 12 at 21:27










            • $begingroup$
              Now i would substitute the roots.
              $endgroup$
              – Dr. Sonnhard Graubner
              Jan 12 at 21:35














            • 1




              $begingroup$
              NONONONONO it makes things wayyyyy worse
              $endgroup$
              – clathratus
              Jan 12 at 20:49










            • $begingroup$
              This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
              $endgroup$
              – John Doe
              Jan 12 at 21:27










            • $begingroup$
              Now i would substitute the roots.
              $endgroup$
              – Dr. Sonnhard Graubner
              Jan 12 at 21:35








            1




            1




            $begingroup$
            NONONONONO it makes things wayyyyy worse
            $endgroup$
            – clathratus
            Jan 12 at 20:49




            $begingroup$
            NONONONONO it makes things wayyyyy worse
            $endgroup$
            – clathratus
            Jan 12 at 20:49












            $begingroup$
            This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
            $endgroup$
            – John Doe
            Jan 12 at 21:27




            $begingroup$
            This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
            $endgroup$
            – John Doe
            Jan 12 at 21:27












            $begingroup$
            Now i would substitute the roots.
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 12 at 21:35




            $begingroup$
            Now i would substitute the roots.
            $endgroup$
            – Dr. Sonnhard Graubner
            Jan 12 at 21:35


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071308%2ftrigonometric-integral-with-tangent%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith