trigonometric integral with tangent
$begingroup$
$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.
calculus integration
$endgroup$
add a comment |
$begingroup$
$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.
calculus integration
$endgroup$
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17
add a comment |
$begingroup$
$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.
calculus integration
$endgroup$
$$intbiggl( sqrt[3]{frac{sin x+1}{cos x}}+sqrt[3]frac{sin x-1}{cos x}biggr)frac{1}{cos^2x},dx ,;xinBigl(-frac{pi}{2},frac{pi}{2}Bigr)$$ Can somebody give some tips about how can I evaluate this integral,please? I observed that $frac{1}{cos^2x}$ is the derivative of tangent, but I don't know how to do it using the substitution $t=tan x$ because there will be $frac{1}{cos x}$ inside and I think there is another method.
calculus integration
calculus integration
edited Jan 12 at 19:52
Bernard
121k740116
121k740116
asked Jan 12 at 19:49
GaboruGaboru
877
877
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17
add a comment |
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}
If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}
giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}
$endgroup$
add a comment |
$begingroup$
First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.
Now let's consider your integral.
Making a trigonometric substitution allows us to consider instead the following integrand:
$$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
Notice that $s$ satisfies the property
$$s=sqrt[3]{2x-3s}$$
or
$$s^3+3s=2x$$
If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
$$2t=x^3+3x$$
Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
$$T(x)=frac{x^4+6x^2}{8}$$
and so the antiderivative of $s$ is given by
$$S(x)=T(s(x))-xs(x)$$
where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
$$T(s(tan(x)))-tan(x)s(tan(x))$$
$endgroup$
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
add a comment |
$begingroup$
Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
$endgroup$
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071308%2ftrigonometric-integral-with-tangent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}
If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}
giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}
$endgroup$
add a comment |
$begingroup$
I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}
If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}
giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}
$endgroup$
add a comment |
$begingroup$
I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}
If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}
giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}
$endgroup$
I will use integration by parts twice. First we write
begin{align}
I &= int left (sqrt[3]{frac{sin x + 1}{cos x}} + sqrt[3]{frac{sin x - 1}{cos x}} right ) sec^2 x , dx\
&= int big{(}sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)} sec^2 x , dx.
end{align}
If we let
$$f(x) = sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x}$$
and
$$g(x) = sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x},$$
then obsereve that
$$f'(x) = frac{1}{3} sec x cdot g(x) quad text{and} quad g'(x) = frac{1}{3} sec x cdot f(x).$$
So for the integral we have
begin{align}
I &= int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - int tan x cdot f'(x) , dx qquad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} int sec x tan x cdot g(x) , dx \
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{3} int sec x cdot g'(x) , dx quad text{(by parts)}\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} int sec^2 x cdot f(x) , dx\
&= f(x) cdot tan x - frac{1}{3} sec x cdot g(x) + frac{1}{9} I,
end{align}
giving
$$I = frac{9}{8} tan x cdot f(x) - frac{3}{8} sec x cdot g(x) + C$$
or
begin{align}
I &= frac{9}{8} tan x big{(} sqrt[3]{tan x + sec x} + sqrt[3]{tan x - sec x} big{)}\
& qquad - frac{3}{8} sec x big{(} sqrt[3]{tan x + sec x} - sqrt[3]{tan x - sec x} big{)} + C.
end{align}
answered Jan 13 at 9:48


omegadotomegadot
5,8372728
5,8372728
add a comment |
add a comment |
$begingroup$
First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.
Now let's consider your integral.
Making a trigonometric substitution allows us to consider instead the following integrand:
$$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
Notice that $s$ satisfies the property
$$s=sqrt[3]{2x-3s}$$
or
$$s^3+3s=2x$$
If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
$$2t=x^3+3x$$
Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
$$T(x)=frac{x^4+6x^2}{8}$$
and so the antiderivative of $s$ is given by
$$S(x)=T(s(x))-xs(x)$$
where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
$$T(s(tan(x)))-tan(x)s(tan(x))$$
$endgroup$
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
add a comment |
$begingroup$
First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.
Now let's consider your integral.
Making a trigonometric substitution allows us to consider instead the following integrand:
$$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
Notice that $s$ satisfies the property
$$s=sqrt[3]{2x-3s}$$
or
$$s^3+3s=2x$$
If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
$$2t=x^3+3x$$
Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
$$T(x)=frac{x^4+6x^2}{8}$$
and so the antiderivative of $s$ is given by
$$S(x)=T(s(x))-xs(x)$$
where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
$$T(s(tan(x)))-tan(x)s(tan(x))$$
$endgroup$
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
add a comment |
$begingroup$
First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.
Now let's consider your integral.
Making a trigonometric substitution allows us to consider instead the following integrand:
$$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
Notice that $s$ satisfies the property
$$s=sqrt[3]{2x-3s}$$
or
$$s^3+3s=2x$$
If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
$$2t=x^3+3x$$
Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
$$T(x)=frac{x^4+6x^2}{8}$$
and so the antiderivative of $s$ is given by
$$S(x)=T(s(x))-xs(x)$$
where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
$$T(s(tan(x)))-tan(x)s(tan(x))$$
$endgroup$
First note that if $f$ is a function with antiderivative $F$, then the antiderivative of its inverse function $f^{-1}(x)$ is $F( f^{-1}(x))-xf^{-1}(x)$, which can be easily shown by differentiating.
Now let's consider your integral.
Making a trigonometric substitution allows us to consider instead the following integrand:
$$s(x)=sqrt[3]{x+sqrt{x^2+1}}+sqrt[3]{x-sqrt{x^2+1}}$$
Notice that $s$ satisfies the property
$$s=sqrt[3]{2x-3s}$$
or
$$s^3+3s=2x$$
If $t$ is the inverse function of $s$ so that $s(t(x))=x$ and $t(s(x))=x$, we have from the above equation that
$$2t=x^3+3x$$
Thus, we may use the formula mentioned at the beginning of the post to solve your integral. The antiderivative of $t$ with respect to $x$ is
$$T(x)=frac{x^4+6x^2}{8}$$
and so the antiderivative of $s$ is given by
$$S(x)=T(s(x))-xs(x)$$
where $T$ and $s$ are defined above. This yields the desired result, and now all you have to do is undo the trig substitution at the beginning, and the value of your integral is
$$T(s(tan(x)))-tan(x)s(tan(x))$$
answered Jan 12 at 20:17


FrpzzdFrpzzd
23k841109
23k841109
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
add a comment |
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
$begingroup$
Is the approach taken here a known method to approach a certain family(ies) of integrals? (similar to say the Half Tangent substitution method for rational trigonometric functions)
$endgroup$
– DavidG
Jan 13 at 0:00
1
1
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
@DavidG Not that I know of. I just worked it out from scratch.
$endgroup$
– Frpzzd
Jan 13 at 0:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
$begingroup$
How did you get that expresion of s(x) ?
$endgroup$
– Gaboru
Jan 13 at 1:36
add a comment |
$begingroup$
Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
$endgroup$
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
add a comment |
$begingroup$
Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
$endgroup$
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
add a comment |
$begingroup$
Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
$endgroup$
Hint: Substitute $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
answered Jan 12 at 20:19


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.2k42865
75.2k42865
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
add a comment |
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
1
1
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
NONONONONO it makes things wayyyyy worse
$endgroup$
– clathratus
Jan 12 at 20:49
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
This gives $$intleft(sqrt[3]frac{1+t}{1-t}+sqrt[3]frac{t-1}{t+1}right)frac{2(1+t^2)}{(1-t^2)^2},dt$$...what then?
$endgroup$
– John Doe
Jan 12 at 21:27
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
$begingroup$
Now i would substitute the roots.
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 21:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071308%2ftrigonometric-integral-with-tangent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you trying to evaluate the integral with the limits $int_{-pi/2}^{pi/2}$, or the indefinite integral?
$endgroup$
– John Doe
Jan 12 at 20:09
$begingroup$
Maybe it should be $frac{1+sin{x}}{cos^2x}$ instead $frac{1}{cos^2x}$?
$endgroup$
– Michael Rozenberg
Jan 12 at 20:11
$begingroup$
Notice, that, when you substitute $x + pi$ for $x$ in the integrand, you get the same function, so according to wikipedia, a sensible change of variable will be $tan$.
$endgroup$
– Viktor Glombik
Jan 12 at 20:17