Asymptotic bounds of $T(n) = T(n/2) + T(n/4) + T(n/8) + n$












2












$begingroup$


This problem is given in "Introduction to Algorithms", by Thomas H. Cormen.



I have the answer to it, but I don't understand it.



The answer is, $T(n) = Theta(n)$.



It would be really good if you can explain it using recursion tree.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Has he mentioned the base case(s)?
    $endgroup$
    – Mohamed Ennahdi El Idrissi
    Aug 1 '14 at 20:17
















2












$begingroup$


This problem is given in "Introduction to Algorithms", by Thomas H. Cormen.



I have the answer to it, but I don't understand it.



The answer is, $T(n) = Theta(n)$.



It would be really good if you can explain it using recursion tree.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Has he mentioned the base case(s)?
    $endgroup$
    – Mohamed Ennahdi El Idrissi
    Aug 1 '14 at 20:17














2












2








2


2



$begingroup$


This problem is given in "Introduction to Algorithms", by Thomas H. Cormen.



I have the answer to it, but I don't understand it.



The answer is, $T(n) = Theta(n)$.



It would be really good if you can explain it using recursion tree.










share|cite|improve this question









$endgroup$




This problem is given in "Introduction to Algorithms", by Thomas H. Cormen.



I have the answer to it, but I don't understand it.



The answer is, $T(n) = Theta(n)$.



It would be really good if you can explain it using recursion tree.







recursion






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Aug 24 '13 at 14:03









JaydeepJaydeep

113114




113114












  • $begingroup$
    Has he mentioned the base case(s)?
    $endgroup$
    – Mohamed Ennahdi El Idrissi
    Aug 1 '14 at 20:17


















  • $begingroup$
    Has he mentioned the base case(s)?
    $endgroup$
    – Mohamed Ennahdi El Idrissi
    Aug 1 '14 at 20:17
















$begingroup$
Has he mentioned the base case(s)?
$endgroup$
– Mohamed Ennahdi El Idrissi
Aug 1 '14 at 20:17




$begingroup$
Has he mentioned the base case(s)?
$endgroup$
– Mohamed Ennahdi El Idrissi
Aug 1 '14 at 20:17










3 Answers
3






active

oldest

votes


















3












$begingroup$

You may be interested to know that the method at this link can be applied to your problem to produce an exact solution.



Let $$n = sum_{k=0}^{lfloor log_2 n rfloor} d_k 2^k$$ be the binary representation of $n$. Furthermore, let $T(0) = 0$ and suppose the recurrence that we are solving is in fact
$$ T(n) = T(lfloor n/2 rfloor) + T(lfloor n/4 rfloor) + T(lfloor n/8 rfloor) + n.$$



Then we have the following exact formula for $T(n)$:
$$ T(n) = sum_{j=0}^{lfloor log_2 n rfloor}
[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
sum_{k=j}^{lfloor log_2 n rfloor} d_k 2^k.$$



Now let $rho_{1,2,3}$ be the inverses of the roots of
$$1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3$$
where $$rho_1 approx 0.9196433771 quad text{and} quad
rho_{2,3} approx -0.2098216888 pm 0.3031453647 i$$
so that $rho_1$ dominates.



Solving for $c_{1,2,3}$ in
$$[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3} =
c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j$$
we obtain
$$c_1 approx 0.6184199255 quad text{and} quad
c_{2,3} approx 0.1907900392 mp 0.01870058304 i.$$



To get a lower bound on $T(n)$, consider the case of a single one followed by zeros, giving
$$ T(n) ge sum_{j=0}^{lfloor log_2 n rfloor}
[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
2^{lfloor log_2 n rfloor}
\ = 2^{lfloor log_2 n rfloor}
sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
= 2^{lfloor log_2 n rfloor}
left(
c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
right).$$
This bound is actually attained.



For an upper bound, consider the case of a string of ones,
$$T(n) le sum_{j=0}^{lfloor log_2 n rfloor}
[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
sum_{k=j}^{lfloor log_2 n rfloor} 2^k
\ = sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
(2^{lfloor log_2 n rfloor +1} - 2^j) \ =
2^{lfloor log_2 n rfloor +1}
left(
c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
right) \
- left(
c_1 frac{(2rho_1)^{lfloor log_2 n rfloor +1}-1}{2rho_1-1} +
c_2 frac{1-(2rho_2)^{lfloor log_2 n rfloor +1}}{1-2rho_2} +
c_3 frac{1-(2rho_3)^{lfloor log_2 n rfloor +1}}{1-2rho_3}
right).$$
This bound too is actually attained.



To conclude we compute the asymptotics. We see that $|rho_{1,2,3}|<1$ and hence the lower bound is asymptotic to
$$ 2^{lfloor log_2 n rfloor}
left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
= 8 times 2^{lfloor log_2 n rfloor}.$$



We also have $|2| > |2rho_1|$ and hence the upper bound is asymptotic to
$$ 2times 2^{lfloor log_2 n rfloor}
left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
= 16 times 2^{lfloor log_2 n rfloor}.$$
It follows that
$$ T(n) in Theta
left(2^{lfloor log_2 n rfloor} right) =
Thetaleft(nright)$$
with the leading coefficient approximating the value $8$ because in the upper bound for a string of ones we have that $lfloor log_2 n rfloor$ is off by almost one from the correct value $log_2 n,$ which turns the sixteen back into eight.






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    Here are the top two layers of the recursion tree:



    enter image description here



    All subsequent levels will have the same pattern: dividing the node of size $k$ into three pieces, of size $k/2, k/4,text{ and }k/8$. The contribution of the lecond-level nodes will be $(7/8)n$, and you can convince yourself that the contribution of the third level (which I haven't drawn) will be $7/8$ of the total contribution in the second level, namely $(7/8)^2n$. If this were to be continued forever the total contributions to $T(n)$ would be
    $$
    n+left(frac{7}{8}right)n+left(frac{7}{8}right)^2n+left(frac{7}{8}right)^3n+cdots
    $$
    so we have a geometric series and thus
    $$
    T(n)le frac{1}{1-frac{7}{8}} = 8n
    $$
    for our upper bound. In a similar way, we could count just the contribution of the leftmost branches and conclude that $T(n)ge 2n$. Putting these together gives us the desired bound, $T(n)=Theta(n)$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
      $endgroup$
      – void-pointer
      Mar 22 '16 at 6:03












    • $begingroup$
      what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
      $endgroup$
      – vikkyhacks
      Jan 9 '17 at 14:15



















    1












    $begingroup$

    Using Akra–Bazzi method



    $$a_1=a_2=a_3=1$$



    $$b_1=2, b_2=4,b_3=8$$



    $$f(n)=n$$



    $$a_i > 0, b_i > 0$$



    $$cfrac{a_1}{b_1^p}+cfrac{a_2}{b_2^p}+cfrac{a_3}{b_3^p}=1$$



    $$left(cfrac{1}{2}right)^p+left(cfrac{1}{4}right)^p+left(cfrac{1}{8}right)^p=1$$



    $$T(n)=Θleft(n^pleft(1+int_n^1 frac{f(x)}{x^{p+1}} , dx right)right)$$



    $$int_n^1 frac{x}{x^{p+1}} , dx=n^{1-p}$$



    $$implies T(n)=Θleft(n^pleft(1+ n^{1-p}right)right) = left(n^pright)*left(n^{1-p}right) = Θleft(nright)$$
    Hence,



    $$ T(n) = Θleft(nright) $$



                                  a_1=a_2=a_3=1
    b1=2 , b2=4 , b3=8
    f(n)=n

    ai>0 , bi>0

    (a1/b1^p)+(a2/b2^p)+(a3/b3^p)=1
    (1/2)^p+(1/4)^p+(1/8)^p=1

    T(n)=Θ(n^p(1+∫n1f(x)/x^p+1dx))

    ∫n1x/x^p+1dx=n^1-p

    T(n)=Θ(n^p(1+n^1-p)=n^p.n^1-p=Θ(n)

    T(n)=Θ(n)





    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      here is a mathjax guide to type maths on this site.
      $endgroup$
      – Siong Thye Goh
      Jan 27 at 12:31











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f475090%2fasymptotic-bounds-of-tn-tn-2-tn-4-tn-8-n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    You may be interested to know that the method at this link can be applied to your problem to produce an exact solution.



    Let $$n = sum_{k=0}^{lfloor log_2 n rfloor} d_k 2^k$$ be the binary representation of $n$. Furthermore, let $T(0) = 0$ and suppose the recurrence that we are solving is in fact
    $$ T(n) = T(lfloor n/2 rfloor) + T(lfloor n/4 rfloor) + T(lfloor n/8 rfloor) + n.$$



    Then we have the following exact formula for $T(n)$:
    $$ T(n) = sum_{j=0}^{lfloor log_2 n rfloor}
    [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
    sum_{k=j}^{lfloor log_2 n rfloor} d_k 2^k.$$



    Now let $rho_{1,2,3}$ be the inverses of the roots of
    $$1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3$$
    where $$rho_1 approx 0.9196433771 quad text{and} quad
    rho_{2,3} approx -0.2098216888 pm 0.3031453647 i$$
    so that $rho_1$ dominates.



    Solving for $c_{1,2,3}$ in
    $$[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3} =
    c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j$$
    we obtain
    $$c_1 approx 0.6184199255 quad text{and} quad
    c_{2,3} approx 0.1907900392 mp 0.01870058304 i.$$



    To get a lower bound on $T(n)$, consider the case of a single one followed by zeros, giving
    $$ T(n) ge sum_{j=0}^{lfloor log_2 n rfloor}
    [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
    2^{lfloor log_2 n rfloor}
    \ = 2^{lfloor log_2 n rfloor}
    sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
    = 2^{lfloor log_2 n rfloor}
    left(
    c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
    c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
    c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
    right).$$
    This bound is actually attained.



    For an upper bound, consider the case of a string of ones,
    $$T(n) le sum_{j=0}^{lfloor log_2 n rfloor}
    [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
    sum_{k=j}^{lfloor log_2 n rfloor} 2^k
    \ = sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
    (2^{lfloor log_2 n rfloor +1} - 2^j) \ =
    2^{lfloor log_2 n rfloor +1}
    left(
    c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
    c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
    c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
    right) \
    - left(
    c_1 frac{(2rho_1)^{lfloor log_2 n rfloor +1}-1}{2rho_1-1} +
    c_2 frac{1-(2rho_2)^{lfloor log_2 n rfloor +1}}{1-2rho_2} +
    c_3 frac{1-(2rho_3)^{lfloor log_2 n rfloor +1}}{1-2rho_3}
    right).$$
    This bound too is actually attained.



    To conclude we compute the asymptotics. We see that $|rho_{1,2,3}|<1$ and hence the lower bound is asymptotic to
    $$ 2^{lfloor log_2 n rfloor}
    left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
    = 8 times 2^{lfloor log_2 n rfloor}.$$



    We also have $|2| > |2rho_1|$ and hence the upper bound is asymptotic to
    $$ 2times 2^{lfloor log_2 n rfloor}
    left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
    = 16 times 2^{lfloor log_2 n rfloor}.$$
    It follows that
    $$ T(n) in Theta
    left(2^{lfloor log_2 n rfloor} right) =
    Thetaleft(nright)$$
    with the leading coefficient approximating the value $8$ because in the upper bound for a string of ones we have that $lfloor log_2 n rfloor$ is off by almost one from the correct value $log_2 n,$ which turns the sixteen back into eight.






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      You may be interested to know that the method at this link can be applied to your problem to produce an exact solution.



      Let $$n = sum_{k=0}^{lfloor log_2 n rfloor} d_k 2^k$$ be the binary representation of $n$. Furthermore, let $T(0) = 0$ and suppose the recurrence that we are solving is in fact
      $$ T(n) = T(lfloor n/2 rfloor) + T(lfloor n/4 rfloor) + T(lfloor n/8 rfloor) + n.$$



      Then we have the following exact formula for $T(n)$:
      $$ T(n) = sum_{j=0}^{lfloor log_2 n rfloor}
      [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
      sum_{k=j}^{lfloor log_2 n rfloor} d_k 2^k.$$



      Now let $rho_{1,2,3}$ be the inverses of the roots of
      $$1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3$$
      where $$rho_1 approx 0.9196433771 quad text{and} quad
      rho_{2,3} approx -0.2098216888 pm 0.3031453647 i$$
      so that $rho_1$ dominates.



      Solving for $c_{1,2,3}$ in
      $$[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3} =
      c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j$$
      we obtain
      $$c_1 approx 0.6184199255 quad text{and} quad
      c_{2,3} approx 0.1907900392 mp 0.01870058304 i.$$



      To get a lower bound on $T(n)$, consider the case of a single one followed by zeros, giving
      $$ T(n) ge sum_{j=0}^{lfloor log_2 n rfloor}
      [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
      2^{lfloor log_2 n rfloor}
      \ = 2^{lfloor log_2 n rfloor}
      sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
      = 2^{lfloor log_2 n rfloor}
      left(
      c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
      c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
      c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
      right).$$
      This bound is actually attained.



      For an upper bound, consider the case of a string of ones,
      $$T(n) le sum_{j=0}^{lfloor log_2 n rfloor}
      [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
      sum_{k=j}^{lfloor log_2 n rfloor} 2^k
      \ = sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
      (2^{lfloor log_2 n rfloor +1} - 2^j) \ =
      2^{lfloor log_2 n rfloor +1}
      left(
      c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
      c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
      c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
      right) \
      - left(
      c_1 frac{(2rho_1)^{lfloor log_2 n rfloor +1}-1}{2rho_1-1} +
      c_2 frac{1-(2rho_2)^{lfloor log_2 n rfloor +1}}{1-2rho_2} +
      c_3 frac{1-(2rho_3)^{lfloor log_2 n rfloor +1}}{1-2rho_3}
      right).$$
      This bound too is actually attained.



      To conclude we compute the asymptotics. We see that $|rho_{1,2,3}|<1$ and hence the lower bound is asymptotic to
      $$ 2^{lfloor log_2 n rfloor}
      left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
      = 8 times 2^{lfloor log_2 n rfloor}.$$



      We also have $|2| > |2rho_1|$ and hence the upper bound is asymptotic to
      $$ 2times 2^{lfloor log_2 n rfloor}
      left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
      = 16 times 2^{lfloor log_2 n rfloor}.$$
      It follows that
      $$ T(n) in Theta
      left(2^{lfloor log_2 n rfloor} right) =
      Thetaleft(nright)$$
      with the leading coefficient approximating the value $8$ because in the upper bound for a string of ones we have that $lfloor log_2 n rfloor$ is off by almost one from the correct value $log_2 n,$ which turns the sixteen back into eight.






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        You may be interested to know that the method at this link can be applied to your problem to produce an exact solution.



        Let $$n = sum_{k=0}^{lfloor log_2 n rfloor} d_k 2^k$$ be the binary representation of $n$. Furthermore, let $T(0) = 0$ and suppose the recurrence that we are solving is in fact
        $$ T(n) = T(lfloor n/2 rfloor) + T(lfloor n/4 rfloor) + T(lfloor n/8 rfloor) + n.$$



        Then we have the following exact formula for $T(n)$:
        $$ T(n) = sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        sum_{k=j}^{lfloor log_2 n rfloor} d_k 2^k.$$



        Now let $rho_{1,2,3}$ be the inverses of the roots of
        $$1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3$$
        where $$rho_1 approx 0.9196433771 quad text{and} quad
        rho_{2,3} approx -0.2098216888 pm 0.3031453647 i$$
        so that $rho_1$ dominates.



        Solving for $c_{1,2,3}$ in
        $$[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3} =
        c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j$$
        we obtain
        $$c_1 approx 0.6184199255 quad text{and} quad
        c_{2,3} approx 0.1907900392 mp 0.01870058304 i.$$



        To get a lower bound on $T(n)$, consider the case of a single one followed by zeros, giving
        $$ T(n) ge sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        2^{lfloor log_2 n rfloor}
        \ = 2^{lfloor log_2 n rfloor}
        sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
        = 2^{lfloor log_2 n rfloor}
        left(
        c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
        c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
        c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
        right).$$
        This bound is actually attained.



        For an upper bound, consider the case of a string of ones,
        $$T(n) le sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        sum_{k=j}^{lfloor log_2 n rfloor} 2^k
        \ = sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
        (2^{lfloor log_2 n rfloor +1} - 2^j) \ =
        2^{lfloor log_2 n rfloor +1}
        left(
        c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
        c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
        c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
        right) \
        - left(
        c_1 frac{(2rho_1)^{lfloor log_2 n rfloor +1}-1}{2rho_1-1} +
        c_2 frac{1-(2rho_2)^{lfloor log_2 n rfloor +1}}{1-2rho_2} +
        c_3 frac{1-(2rho_3)^{lfloor log_2 n rfloor +1}}{1-2rho_3}
        right).$$
        This bound too is actually attained.



        To conclude we compute the asymptotics. We see that $|rho_{1,2,3}|<1$ and hence the lower bound is asymptotic to
        $$ 2^{lfloor log_2 n rfloor}
        left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
        = 8 times 2^{lfloor log_2 n rfloor}.$$



        We also have $|2| > |2rho_1|$ and hence the upper bound is asymptotic to
        $$ 2times 2^{lfloor log_2 n rfloor}
        left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
        = 16 times 2^{lfloor log_2 n rfloor}.$$
        It follows that
        $$ T(n) in Theta
        left(2^{lfloor log_2 n rfloor} right) =
        Thetaleft(nright)$$
        with the leading coefficient approximating the value $8$ because in the upper bound for a string of ones we have that $lfloor log_2 n rfloor$ is off by almost one from the correct value $log_2 n,$ which turns the sixteen back into eight.






        share|cite|improve this answer











        $endgroup$



        You may be interested to know that the method at this link can be applied to your problem to produce an exact solution.



        Let $$n = sum_{k=0}^{lfloor log_2 n rfloor} d_k 2^k$$ be the binary representation of $n$. Furthermore, let $T(0) = 0$ and suppose the recurrence that we are solving is in fact
        $$ T(n) = T(lfloor n/2 rfloor) + T(lfloor n/4 rfloor) + T(lfloor n/8 rfloor) + n.$$



        Then we have the following exact formula for $T(n)$:
        $$ T(n) = sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        sum_{k=j}^{lfloor log_2 n rfloor} d_k 2^k.$$



        Now let $rho_{1,2,3}$ be the inverses of the roots of
        $$1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3$$
        where $$rho_1 approx 0.9196433771 quad text{and} quad
        rho_{2,3} approx -0.2098216888 pm 0.3031453647 i$$
        so that $rho_1$ dominates.



        Solving for $c_{1,2,3}$ in
        $$[z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3} =
        c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j$$
        we obtain
        $$c_1 approx 0.6184199255 quad text{and} quad
        c_{2,3} approx 0.1907900392 mp 0.01870058304 i.$$



        To get a lower bound on $T(n)$, consider the case of a single one followed by zeros, giving
        $$ T(n) ge sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        2^{lfloor log_2 n rfloor}
        \ = 2^{lfloor log_2 n rfloor}
        sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
        = 2^{lfloor log_2 n rfloor}
        left(
        c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
        c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
        c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
        right).$$
        This bound is actually attained.



        For an upper bound, consider the case of a string of ones,
        $$T(n) le sum_{j=0}^{lfloor log_2 n rfloor}
        [z^j] frac{1}{1 - frac{1}{2} z - frac{1}{4} z^2 - frac{1}{8} z^3}
        sum_{k=j}^{lfloor log_2 n rfloor} 2^k
        \ = sum_{j=0}^{lfloor log_2 n rfloor} (c_1 rho_1^j + c_2 rho_2^j + c_3 rho_3^j)
        (2^{lfloor log_2 n rfloor +1} - 2^j) \ =
        2^{lfloor log_2 n rfloor +1}
        left(
        c_1 frac{1-rho_1^{lfloor log_2 n rfloor +1}}{1-rho_1} +
        c_2 frac{1-rho_2^{lfloor log_2 n rfloor +1}}{1-rho_2} +
        c_3 frac{1-rho_3^{lfloor log_2 n rfloor +1}}{1-rho_3}
        right) \
        - left(
        c_1 frac{(2rho_1)^{lfloor log_2 n rfloor +1}-1}{2rho_1-1} +
        c_2 frac{1-(2rho_2)^{lfloor log_2 n rfloor +1}}{1-2rho_2} +
        c_3 frac{1-(2rho_3)^{lfloor log_2 n rfloor +1}}{1-2rho_3}
        right).$$
        This bound too is actually attained.



        To conclude we compute the asymptotics. We see that $|rho_{1,2,3}|<1$ and hence the lower bound is asymptotic to
        $$ 2^{lfloor log_2 n rfloor}
        left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
        = 8 times 2^{lfloor log_2 n rfloor}.$$



        We also have $|2| > |2rho_1|$ and hence the upper bound is asymptotic to
        $$ 2times 2^{lfloor log_2 n rfloor}
        left(frac{c_1}{1-rho_1} +frac{c_2}{1-rho_2} +frac{c_3}{1-rho_3} right)
        = 16 times 2^{lfloor log_2 n rfloor}.$$
        It follows that
        $$ T(n) in Theta
        left(2^{lfloor log_2 n rfloor} right) =
        Thetaleft(nright)$$
        with the leading coefficient approximating the value $8$ because in the upper bound for a string of ones we have that $lfloor log_2 n rfloor$ is off by almost one from the correct value $log_2 n,$ which turns the sixteen back into eight.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 13 '17 at 12:19









        Community

        1




        1










        answered Aug 24 '13 at 21:35









        Marko RiedelMarko Riedel

        40.8k340110




        40.8k340110























            2












            $begingroup$

            Here are the top two layers of the recursion tree:



            enter image description here



            All subsequent levels will have the same pattern: dividing the node of size $k$ into three pieces, of size $k/2, k/4,text{ and }k/8$. The contribution of the lecond-level nodes will be $(7/8)n$, and you can convince yourself that the contribution of the third level (which I haven't drawn) will be $7/8$ of the total contribution in the second level, namely $(7/8)^2n$. If this were to be continued forever the total contributions to $T(n)$ would be
            $$
            n+left(frac{7}{8}right)n+left(frac{7}{8}right)^2n+left(frac{7}{8}right)^3n+cdots
            $$
            so we have a geometric series and thus
            $$
            T(n)le frac{1}{1-frac{7}{8}} = 8n
            $$
            for our upper bound. In a similar way, we could count just the contribution of the leftmost branches and conclude that $T(n)ge 2n$. Putting these together gives us the desired bound, $T(n)=Theta(n)$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
              $endgroup$
              – void-pointer
              Mar 22 '16 at 6:03












            • $begingroup$
              what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
              $endgroup$
              – vikkyhacks
              Jan 9 '17 at 14:15
















            2












            $begingroup$

            Here are the top two layers of the recursion tree:



            enter image description here



            All subsequent levels will have the same pattern: dividing the node of size $k$ into three pieces, of size $k/2, k/4,text{ and }k/8$. The contribution of the lecond-level nodes will be $(7/8)n$, and you can convince yourself that the contribution of the third level (which I haven't drawn) will be $7/8$ of the total contribution in the second level, namely $(7/8)^2n$. If this were to be continued forever the total contributions to $T(n)$ would be
            $$
            n+left(frac{7}{8}right)n+left(frac{7}{8}right)^2n+left(frac{7}{8}right)^3n+cdots
            $$
            so we have a geometric series and thus
            $$
            T(n)le frac{1}{1-frac{7}{8}} = 8n
            $$
            for our upper bound. In a similar way, we could count just the contribution of the leftmost branches and conclude that $T(n)ge 2n$. Putting these together gives us the desired bound, $T(n)=Theta(n)$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
              $endgroup$
              – void-pointer
              Mar 22 '16 at 6:03












            • $begingroup$
              what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
              $endgroup$
              – vikkyhacks
              Jan 9 '17 at 14:15














            2












            2








            2





            $begingroup$

            Here are the top two layers of the recursion tree:



            enter image description here



            All subsequent levels will have the same pattern: dividing the node of size $k$ into three pieces, of size $k/2, k/4,text{ and }k/8$. The contribution of the lecond-level nodes will be $(7/8)n$, and you can convince yourself that the contribution of the third level (which I haven't drawn) will be $7/8$ of the total contribution in the second level, namely $(7/8)^2n$. If this were to be continued forever the total contributions to $T(n)$ would be
            $$
            n+left(frac{7}{8}right)n+left(frac{7}{8}right)^2n+left(frac{7}{8}right)^3n+cdots
            $$
            so we have a geometric series and thus
            $$
            T(n)le frac{1}{1-frac{7}{8}} = 8n
            $$
            for our upper bound. In a similar way, we could count just the contribution of the leftmost branches and conclude that $T(n)ge 2n$. Putting these together gives us the desired bound, $T(n)=Theta(n)$.






            share|cite|improve this answer









            $endgroup$



            Here are the top two layers of the recursion tree:



            enter image description here



            All subsequent levels will have the same pattern: dividing the node of size $k$ into three pieces, of size $k/2, k/4,text{ and }k/8$. The contribution of the lecond-level nodes will be $(7/8)n$, and you can convince yourself that the contribution of the third level (which I haven't drawn) will be $7/8$ of the total contribution in the second level, namely $(7/8)^2n$. If this were to be continued forever the total contributions to $T(n)$ would be
            $$
            n+left(frac{7}{8}right)n+left(frac{7}{8}right)^2n+left(frac{7}{8}right)^3n+cdots
            $$
            so we have a geometric series and thus
            $$
            T(n)le frac{1}{1-frac{7}{8}} = 8n
            $$
            for our upper bound. In a similar way, we could count just the contribution of the leftmost branches and conclude that $T(n)ge 2n$. Putting these together gives us the desired bound, $T(n)=Theta(n)$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Aug 24 '13 at 21:33









            Rick DeckerRick Decker

            7,63432341




            7,63432341












            • $begingroup$
              Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
              $endgroup$
              – void-pointer
              Mar 22 '16 at 6:03












            • $begingroup$
              what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
              $endgroup$
              – vikkyhacks
              Jan 9 '17 at 14:15


















            • $begingroup$
              Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
              $endgroup$
              – void-pointer
              Mar 22 '16 at 6:03












            • $begingroup$
              what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
              $endgroup$
              – vikkyhacks
              Jan 9 '17 at 14:15
















            $begingroup$
            Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
            $endgroup$
            – void-pointer
            Mar 22 '16 at 6:03






            $begingroup$
            Is the analysis for the upper bound still valid if we take into consideration the fact that $T(k) = c$ for some $k, c in mathbb{Z}_{gt 0}$? If we pretend that all leaves terminate when the leftmost branch terminates, then the work done by the leaf nodes is $3^{log_2{n}}$, which is superlinear.
            $endgroup$
            – void-pointer
            Mar 22 '16 at 6:03














            $begingroup$
            what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
            $endgroup$
            – vikkyhacks
            Jan 9 '17 at 14:15




            $begingroup$
            what about the 'n' in the end of recurrence relation T(n)=T(n/2)+T(n/4)+T(n/8)+n ? Will the above answer if we have T(n)=T(n/2)+T(n/4)+T(n/8)+ 2^n ?
            $endgroup$
            – vikkyhacks
            Jan 9 '17 at 14:15











            1












            $begingroup$

            Using Akra–Bazzi method



            $$a_1=a_2=a_3=1$$



            $$b_1=2, b_2=4,b_3=8$$



            $$f(n)=n$$



            $$a_i > 0, b_i > 0$$



            $$cfrac{a_1}{b_1^p}+cfrac{a_2}{b_2^p}+cfrac{a_3}{b_3^p}=1$$



            $$left(cfrac{1}{2}right)^p+left(cfrac{1}{4}right)^p+left(cfrac{1}{8}right)^p=1$$



            $$T(n)=Θleft(n^pleft(1+int_n^1 frac{f(x)}{x^{p+1}} , dx right)right)$$



            $$int_n^1 frac{x}{x^{p+1}} , dx=n^{1-p}$$



            $$implies T(n)=Θleft(n^pleft(1+ n^{1-p}right)right) = left(n^pright)*left(n^{1-p}right) = Θleft(nright)$$
            Hence,



            $$ T(n) = Θleft(nright) $$



                                          a_1=a_2=a_3=1
            b1=2 , b2=4 , b3=8
            f(n)=n

            ai>0 , bi>0

            (a1/b1^p)+(a2/b2^p)+(a3/b3^p)=1
            (1/2)^p+(1/4)^p+(1/8)^p=1

            T(n)=Θ(n^p(1+∫n1f(x)/x^p+1dx))

            ∫n1x/x^p+1dx=n^1-p

            T(n)=Θ(n^p(1+n^1-p)=n^p.n^1-p=Θ(n)

            T(n)=Θ(n)





            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              here is a mathjax guide to type maths on this site.
              $endgroup$
              – Siong Thye Goh
              Jan 27 at 12:31
















            1












            $begingroup$

            Using Akra–Bazzi method



            $$a_1=a_2=a_3=1$$



            $$b_1=2, b_2=4,b_3=8$$



            $$f(n)=n$$



            $$a_i > 0, b_i > 0$$



            $$cfrac{a_1}{b_1^p}+cfrac{a_2}{b_2^p}+cfrac{a_3}{b_3^p}=1$$



            $$left(cfrac{1}{2}right)^p+left(cfrac{1}{4}right)^p+left(cfrac{1}{8}right)^p=1$$



            $$T(n)=Θleft(n^pleft(1+int_n^1 frac{f(x)}{x^{p+1}} , dx right)right)$$



            $$int_n^1 frac{x}{x^{p+1}} , dx=n^{1-p}$$



            $$implies T(n)=Θleft(n^pleft(1+ n^{1-p}right)right) = left(n^pright)*left(n^{1-p}right) = Θleft(nright)$$
            Hence,



            $$ T(n) = Θleft(nright) $$



                                          a_1=a_2=a_3=1
            b1=2 , b2=4 , b3=8
            f(n)=n

            ai>0 , bi>0

            (a1/b1^p)+(a2/b2^p)+(a3/b3^p)=1
            (1/2)^p+(1/4)^p+(1/8)^p=1

            T(n)=Θ(n^p(1+∫n1f(x)/x^p+1dx))

            ∫n1x/x^p+1dx=n^1-p

            T(n)=Θ(n^p(1+n^1-p)=n^p.n^1-p=Θ(n)

            T(n)=Θ(n)





            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              here is a mathjax guide to type maths on this site.
              $endgroup$
              – Siong Thye Goh
              Jan 27 at 12:31














            1












            1








            1





            $begingroup$

            Using Akra–Bazzi method



            $$a_1=a_2=a_3=1$$



            $$b_1=2, b_2=4,b_3=8$$



            $$f(n)=n$$



            $$a_i > 0, b_i > 0$$



            $$cfrac{a_1}{b_1^p}+cfrac{a_2}{b_2^p}+cfrac{a_3}{b_3^p}=1$$



            $$left(cfrac{1}{2}right)^p+left(cfrac{1}{4}right)^p+left(cfrac{1}{8}right)^p=1$$



            $$T(n)=Θleft(n^pleft(1+int_n^1 frac{f(x)}{x^{p+1}} , dx right)right)$$



            $$int_n^1 frac{x}{x^{p+1}} , dx=n^{1-p}$$



            $$implies T(n)=Θleft(n^pleft(1+ n^{1-p}right)right) = left(n^pright)*left(n^{1-p}right) = Θleft(nright)$$
            Hence,



            $$ T(n) = Θleft(nright) $$



                                          a_1=a_2=a_3=1
            b1=2 , b2=4 , b3=8
            f(n)=n

            ai>0 , bi>0

            (a1/b1^p)+(a2/b2^p)+(a3/b3^p)=1
            (1/2)^p+(1/4)^p+(1/8)^p=1

            T(n)=Θ(n^p(1+∫n1f(x)/x^p+1dx))

            ∫n1x/x^p+1dx=n^1-p

            T(n)=Θ(n^p(1+n^1-p)=n^p.n^1-p=Θ(n)

            T(n)=Θ(n)





            share|cite|improve this answer











            $endgroup$



            Using Akra–Bazzi method



            $$a_1=a_2=a_3=1$$



            $$b_1=2, b_2=4,b_3=8$$



            $$f(n)=n$$



            $$a_i > 0, b_i > 0$$



            $$cfrac{a_1}{b_1^p}+cfrac{a_2}{b_2^p}+cfrac{a_3}{b_3^p}=1$$



            $$left(cfrac{1}{2}right)^p+left(cfrac{1}{4}right)^p+left(cfrac{1}{8}right)^p=1$$



            $$T(n)=Θleft(n^pleft(1+int_n^1 frac{f(x)}{x^{p+1}} , dx right)right)$$



            $$int_n^1 frac{x}{x^{p+1}} , dx=n^{1-p}$$



            $$implies T(n)=Θleft(n^pleft(1+ n^{1-p}right)right) = left(n^pright)*left(n^{1-p}right) = Θleft(nright)$$
            Hence,



            $$ T(n) = Θleft(nright) $$



                                          a_1=a_2=a_3=1
            b1=2 , b2=4 , b3=8
            f(n)=n

            ai>0 , bi>0

            (a1/b1^p)+(a2/b2^p)+(a3/b3^p)=1
            (1/2)^p+(1/4)^p+(1/8)^p=1

            T(n)=Θ(n^p(1+∫n1f(x)/x^p+1dx))

            ∫n1x/x^p+1dx=n^1-p

            T(n)=Θ(n^p(1+n^1-p)=n^p.n^1-p=Θ(n)

            T(n)=Θ(n)






            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 27 at 16:40









            Kartikey Kumar

            31




            31










            answered Jan 27 at 12:08









            N.HashemiN.Hashemi

            112




            112












            • $begingroup$
              here is a mathjax guide to type maths on this site.
              $endgroup$
              – Siong Thye Goh
              Jan 27 at 12:31


















            • $begingroup$
              here is a mathjax guide to type maths on this site.
              $endgroup$
              – Siong Thye Goh
              Jan 27 at 12:31
















            $begingroup$
            here is a mathjax guide to type maths on this site.
            $endgroup$
            – Siong Thye Goh
            Jan 27 at 12:31




            $begingroup$
            here is a mathjax guide to type maths on this site.
            $endgroup$
            – Siong Thye Goh
            Jan 27 at 12:31


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f475090%2fasymptotic-bounds-of-tn-tn-2-tn-4-tn-8-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory