Equivalence on definition of Folner sequence
$begingroup$
$textbf{Definition 1.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if for every $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{|(F_n + v) Delta F_n|}{|F_n|} = 0$.
$textbf{Definition 2.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if $lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$, where $partial F = {v in mathbb{Z}^d : v notin F, d(v, F) = 1}$.
What I did was the following:
$(1 implies 2)$ First of all, note that as ${F_n}_{n in mathbb{N}}$ is a Folner sequence in the sense of definition $1$, we have that $lim_{n rightarrow +infty} frac{|(F_n pm e_i) Delta F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$. Thus, $lim_{n rightarrow +infty} frac{|(F_n pm e_i) setminus F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$.
Now, note that $|partial F_n| leq |(F_n + e_1) setminus F_n| + dots + |(F_n + e_d) setminus F_n| + |(F_n - e_1) setminus F_n)| + dots + |(F_n - e_d) setminus F_n|$. The, by the remark made above, we have that
$lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$.
Now, I have two questions:
1) Is it clear (and correct) the argument above?
2) I'm having some trouble to show that $2 implies 1$. Could someone help me?
Thanks in advance!
sequences-and-series group-theory finite-groups amenability
$endgroup$
add a comment |
$begingroup$
$textbf{Definition 1.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if for every $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{|(F_n + v) Delta F_n|}{|F_n|} = 0$.
$textbf{Definition 2.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if $lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$, where $partial F = {v in mathbb{Z}^d : v notin F, d(v, F) = 1}$.
What I did was the following:
$(1 implies 2)$ First of all, note that as ${F_n}_{n in mathbb{N}}$ is a Folner sequence in the sense of definition $1$, we have that $lim_{n rightarrow +infty} frac{|(F_n pm e_i) Delta F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$. Thus, $lim_{n rightarrow +infty} frac{|(F_n pm e_i) setminus F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$.
Now, note that $|partial F_n| leq |(F_n + e_1) setminus F_n| + dots + |(F_n + e_d) setminus F_n| + |(F_n - e_1) setminus F_n)| + dots + |(F_n - e_d) setminus F_n|$. The, by the remark made above, we have that
$lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$.
Now, I have two questions:
1) Is it clear (and correct) the argument above?
2) I'm having some trouble to show that $2 implies 1$. Could someone help me?
Thanks in advance!
sequences-and-series group-theory finite-groups amenability
$endgroup$
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
1
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52
add a comment |
$begingroup$
$textbf{Definition 1.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if for every $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{|(F_n + v) Delta F_n|}{|F_n|} = 0$.
$textbf{Definition 2.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if $lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$, where $partial F = {v in mathbb{Z}^d : v notin F, d(v, F) = 1}$.
What I did was the following:
$(1 implies 2)$ First of all, note that as ${F_n}_{n in mathbb{N}}$ is a Folner sequence in the sense of definition $1$, we have that $lim_{n rightarrow +infty} frac{|(F_n pm e_i) Delta F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$. Thus, $lim_{n rightarrow +infty} frac{|(F_n pm e_i) setminus F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$.
Now, note that $|partial F_n| leq |(F_n + e_1) setminus F_n| + dots + |(F_n + e_d) setminus F_n| + |(F_n - e_1) setminus F_n)| + dots + |(F_n - e_d) setminus F_n|$. The, by the remark made above, we have that
$lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$.
Now, I have two questions:
1) Is it clear (and correct) the argument above?
2) I'm having some trouble to show that $2 implies 1$. Could someone help me?
Thanks in advance!
sequences-and-series group-theory finite-groups amenability
$endgroup$
$textbf{Definition 1.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if for every $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{|(F_n + v) Delta F_n|}{|F_n|} = 0$.
$textbf{Definition 2.}$ Let ${F_n}_{n in mathbb{N}}$ be a sequence of finite subsets of $mathbb{Z}^d$. We say that ${F_n}_{n in mathbb{N}}$ is a Folner sequence if $lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$, where $partial F = {v in mathbb{Z}^d : v notin F, d(v, F) = 1}$.
What I did was the following:
$(1 implies 2)$ First of all, note that as ${F_n}_{n in mathbb{N}}$ is a Folner sequence in the sense of definition $1$, we have that $lim_{n rightarrow +infty} frac{|(F_n pm e_i) Delta F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$. Thus, $lim_{n rightarrow +infty} frac{|(F_n pm e_i) setminus F_n|}{|F_n|} = 0$, for all $i in {1, dots, d}$.
Now, note that $|partial F_n| leq |(F_n + e_1) setminus F_n| + dots + |(F_n + e_d) setminus F_n| + |(F_n - e_1) setminus F_n)| + dots + |(F_n - e_d) setminus F_n|$. The, by the remark made above, we have that
$lim_{n rightarrow +infty} frac{|partial F_n|}{|F_n|} = 0$.
Now, I have two questions:
1) Is it clear (and correct) the argument above?
2) I'm having some trouble to show that $2 implies 1$. Could someone help me?
Thanks in advance!
sequences-and-series group-theory finite-groups amenability
sequences-and-series group-theory finite-groups amenability
edited Jan 27 at 23:25
Andrés E. Caicedo
65.8k8160251
65.8k8160251
asked Jan 27 at 16:30
Pedro FilipiniPedro Filipini
233
233
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
1
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52
add a comment |
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
1
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
1
1
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Given $v$, pick a sequence $v_0=0,v_1,ldots, v_m=v$ such that $d(v_i,v_{i+1})=1$.
Now note that a point $xin(F_n+v)mathrel{Delta} F_n$ is either a point $xin F_n$ such that $x-vnotin F_n$ or vice versa. Thus in the sequence $x-v_0,x-v_1,ldots, x-v_m$, we encounter a switch form $in F_n$ to $notin F_n$ or vice versa. Thus to every point in $(F_n+v)mathrel{Delta} F_n$, we can associate an index $iin{0,ldots, m}$, a point in $delta F_n$, and an additional "bit" whether $xin F_n$ or $xin F_n+v$. We conclude
$$|(F_n+v)mathrel{Delta} F_n|le |delta F_n|cdot (m+1)cdot 2.$$
$endgroup$
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089773%2fequivalence-on-definition-of-folner-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given $v$, pick a sequence $v_0=0,v_1,ldots, v_m=v$ such that $d(v_i,v_{i+1})=1$.
Now note that a point $xin(F_n+v)mathrel{Delta} F_n$ is either a point $xin F_n$ such that $x-vnotin F_n$ or vice versa. Thus in the sequence $x-v_0,x-v_1,ldots, x-v_m$, we encounter a switch form $in F_n$ to $notin F_n$ or vice versa. Thus to every point in $(F_n+v)mathrel{Delta} F_n$, we can associate an index $iin{0,ldots, m}$, a point in $delta F_n$, and an additional "bit" whether $xin F_n$ or $xin F_n+v$. We conclude
$$|(F_n+v)mathrel{Delta} F_n|le |delta F_n|cdot (m+1)cdot 2.$$
$endgroup$
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
add a comment |
$begingroup$
Given $v$, pick a sequence $v_0=0,v_1,ldots, v_m=v$ such that $d(v_i,v_{i+1})=1$.
Now note that a point $xin(F_n+v)mathrel{Delta} F_n$ is either a point $xin F_n$ such that $x-vnotin F_n$ or vice versa. Thus in the sequence $x-v_0,x-v_1,ldots, x-v_m$, we encounter a switch form $in F_n$ to $notin F_n$ or vice versa. Thus to every point in $(F_n+v)mathrel{Delta} F_n$, we can associate an index $iin{0,ldots, m}$, a point in $delta F_n$, and an additional "bit" whether $xin F_n$ or $xin F_n+v$. We conclude
$$|(F_n+v)mathrel{Delta} F_n|le |delta F_n|cdot (m+1)cdot 2.$$
$endgroup$
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
add a comment |
$begingroup$
Given $v$, pick a sequence $v_0=0,v_1,ldots, v_m=v$ such that $d(v_i,v_{i+1})=1$.
Now note that a point $xin(F_n+v)mathrel{Delta} F_n$ is either a point $xin F_n$ such that $x-vnotin F_n$ or vice versa. Thus in the sequence $x-v_0,x-v_1,ldots, x-v_m$, we encounter a switch form $in F_n$ to $notin F_n$ or vice versa. Thus to every point in $(F_n+v)mathrel{Delta} F_n$, we can associate an index $iin{0,ldots, m}$, a point in $delta F_n$, and an additional "bit" whether $xin F_n$ or $xin F_n+v$. We conclude
$$|(F_n+v)mathrel{Delta} F_n|le |delta F_n|cdot (m+1)cdot 2.$$
$endgroup$
Given $v$, pick a sequence $v_0=0,v_1,ldots, v_m=v$ such that $d(v_i,v_{i+1})=1$.
Now note that a point $xin(F_n+v)mathrel{Delta} F_n$ is either a point $xin F_n$ such that $x-vnotin F_n$ or vice versa. Thus in the sequence $x-v_0,x-v_1,ldots, x-v_m$, we encounter a switch form $in F_n$ to $notin F_n$ or vice versa. Thus to every point in $(F_n+v)mathrel{Delta} F_n$, we can associate an index $iin{0,ldots, m}$, a point in $delta F_n$, and an additional "bit" whether $xin F_n$ or $xin F_n+v$. We conclude
$$|(F_n+v)mathrel{Delta} F_n|le |delta F_n|cdot (m+1)cdot 2.$$
answered Jan 27 at 17:16
Hagen von EitzenHagen von Eitzen
283k23272507
283k23272507
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
add a comment |
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
$begingroup$
Why does this switch form exist? Why couldn't it happen that it switches an odd number of times?
$endgroup$
– Pedro Filipini
Jan 27 at 18:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089773%2fequivalence-on-definition-of-folner-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note that $d(v,F)=1$ implies that $vnot in F$ in definition 2.
$endgroup$
– Yanko
Jan 27 at 16:50
1
$begingroup$
1) it looks good to me. 2) you need to apply the definition multiple times. Each time move one step until you move "$v$" steps. (i.e. write $v=sum_{i=1}^d a_i e_i$ then move $a_i$ times in the $e_i$ direction for all $i$ each time the limit is zero so the sum of all limits will be zero).
$endgroup$
– Yanko
Jan 27 at 16:52