$bigcup_{xin K}B'(x,r)=left {xin X |d(x,K)leq rright }$ for $K$ compact
$begingroup$
Let $(X,d)$ be a metric space and let $K$ be a compact subset of $X$
Let $r>0$ be given
Prove, $bigcup_{xin K}B'(x,r)=left {xin X |d(x,K)leq rright }$ where $d(x,K)=inf_{yin K}d(x,y)$ (B' is closed ball)
Any hints ?
general-topology
$endgroup$
add a comment |
$begingroup$
Let $(X,d)$ be a metric space and let $K$ be a compact subset of $X$
Let $r>0$ be given
Prove, $bigcup_{xin K}B'(x,r)=left {xin X |d(x,K)leq rright }$ where $d(x,K)=inf_{yin K}d(x,y)$ (B' is closed ball)
Any hints ?
general-topology
$endgroup$
add a comment |
$begingroup$
Let $(X,d)$ be a metric space and let $K$ be a compact subset of $X$
Let $r>0$ be given
Prove, $bigcup_{xin K}B'(x,r)=left {xin X |d(x,K)leq rright }$ where $d(x,K)=inf_{yin K}d(x,y)$ (B' is closed ball)
Any hints ?
general-topology
$endgroup$
Let $(X,d)$ be a metric space and let $K$ be a compact subset of $X$
Let $r>0$ be given
Prove, $bigcup_{xin K}B'(x,r)=left {xin X |d(x,K)leq rright }$ where $d(x,K)=inf_{yin K}d(x,y)$ (B' is closed ball)
Any hints ?
general-topology
general-topology
edited Jan 21 at 10:34
Mariah
1,5561718
1,5561718
asked Jan 20 at 22:53
Pedro AlvarèsPedro Alvarès
636
636
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hints:
$1). $ If $yin bigcup_{xin K}B'(x,r),$ then $yin B'(x,r)$ for some ball $B'$. Then, $d(x,y)le r.$
$2). $ If $yin left {xin X |d(x,K)leq rright }, $ then fix this $y$ and note that the function $d(y,cdot ):Xto mathbb R$ is continuous, so it attains its minimum on the compact set $K$.
$endgroup$
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
|
show 4 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081236%2fbigcup-x-in-kbx-r-left-x-in-x-dx-k-leq-r-right-for-k-compact%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hints:
$1). $ If $yin bigcup_{xin K}B'(x,r),$ then $yin B'(x,r)$ for some ball $B'$. Then, $d(x,y)le r.$
$2). $ If $yin left {xin X |d(x,K)leq rright }, $ then fix this $y$ and note that the function $d(y,cdot ):Xto mathbb R$ is continuous, so it attains its minimum on the compact set $K$.
$endgroup$
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
|
show 4 more comments
$begingroup$
Hints:
$1). $ If $yin bigcup_{xin K}B'(x,r),$ then $yin B'(x,r)$ for some ball $B'$. Then, $d(x,y)le r.$
$2). $ If $yin left {xin X |d(x,K)leq rright }, $ then fix this $y$ and note that the function $d(y,cdot ):Xto mathbb R$ is continuous, so it attains its minimum on the compact set $K$.
$endgroup$
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
|
show 4 more comments
$begingroup$
Hints:
$1). $ If $yin bigcup_{xin K}B'(x,r),$ then $yin B'(x,r)$ for some ball $B'$. Then, $d(x,y)le r.$
$2). $ If $yin left {xin X |d(x,K)leq rright }, $ then fix this $y$ and note that the function $d(y,cdot ):Xto mathbb R$ is continuous, so it attains its minimum on the compact set $K$.
$endgroup$
Hints:
$1). $ If $yin bigcup_{xin K}B'(x,r),$ then $yin B'(x,r)$ for some ball $B'$. Then, $d(x,y)le r.$
$2). $ If $yin left {xin X |d(x,K)leq rright }, $ then fix this $y$ and note that the function $d(y,cdot ):Xto mathbb R$ is continuous, so it attains its minimum on the compact set $K$.
answered Jan 20 at 23:36


MatematletaMatematleta
11.5k2920
11.5k2920
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
|
show 4 more comments
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
I'm done with 1) , I found my way with the first inclusion,but I'm stuck with 2)
$endgroup$
– Pedro Alvarès
Jan 20 at 23:47
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
The key phrase is: " it attains its minimum on the compact set K."
$endgroup$
– Matematleta
Jan 20 at 23:51
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
You mean inf(d(y,K))=<d(y,K) ?
$endgroup$
– Pedro Alvarès
Jan 21 at 0:00
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
I mean the inf is reached. So now that means that there is a ___ in ___ such that ___.
$endgroup$
– Matematleta
Jan 21 at 0:01
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
$begingroup$
There is a sequence in K that converges ??
$endgroup$
– Pedro Alvarès
Jan 21 at 0:08
|
show 4 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081236%2fbigcup-x-in-kbx-r-left-x-in-x-dx-k-leq-r-right-for-k-compact%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown