By Cauchy I theorem on limits of sequence I am getting sequence is divergent
$begingroup$
By Cauchy II Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l
And , By Cauchy I Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l
Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as
$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$
But is not convergent by Cauchy I Theorem ,
Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$
taking logarithm on both sides ,we get
$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$
By using Cauchy I Theorem ,we get
$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$
$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $
$implies lim_{nto infty}log(t)=infty$
$t=e^{infty}=infty$
$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .
Hence sequence diverges !!
By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .
Please help me tell me where I am getting wrong !!
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
By Cauchy II Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l
And , By Cauchy I Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l
Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as
$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$
But is not convergent by Cauchy I Theorem ,
Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$
taking logarithm on both sides ,we get
$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$
By using Cauchy I Theorem ,we get
$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$
$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $
$implies lim_{nto infty}log(t)=infty$
$t=e^{infty}=infty$
$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .
Hence sequence diverges !!
By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .
Please help me tell me where I am getting wrong !!
real-analysis sequences-and-series
$endgroup$
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03
add a comment |
$begingroup$
By Cauchy II Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l
And , By Cauchy I Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l
Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as
$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$
But is not convergent by Cauchy I Theorem ,
Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$
taking logarithm on both sides ,we get
$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$
By using Cauchy I Theorem ,we get
$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$
$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $
$implies lim_{nto infty}log(t)=infty$
$t=e^{infty}=infty$
$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .
Hence sequence diverges !!
By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .
Please help me tell me where I am getting wrong !!
real-analysis sequences-and-series
$endgroup$
By Cauchy II Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l
And , By Cauchy I Theorem on Limits ,
If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$
$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l
Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as
$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$
But is not convergent by Cauchy I Theorem ,
Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$
taking logarithm on both sides ,we get
$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$
By using Cauchy I Theorem ,we get
$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$
$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $
$implies lim_{nto infty}log(t)=infty$
$t=e^{infty}=infty$
$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .
Hence sequence diverges !!
By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .
Please help me tell me where I am getting wrong !!
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Jan 25 at 16:02
sejy
asked Jan 25 at 12:40


sejysejy
1549
1549
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03
add a comment |
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$log(1/2) <0$ so
$nlog(1/2) to -infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087063%2fby-cauchy-i-theorem-on-limits-of-sequence-i-am-getting-sequence-is-divergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$log(1/2) <0$ so
$nlog(1/2) to -infty$.
$endgroup$
add a comment |
$begingroup$
$log(1/2) <0$ so
$nlog(1/2) to -infty$.
$endgroup$
add a comment |
$begingroup$
$log(1/2) <0$ so
$nlog(1/2) to -infty$.
$endgroup$
$log(1/2) <0$ so
$nlog(1/2) to -infty$.
answered Jan 25 at 16:13
marty cohenmarty cohen
74.4k549129
74.4k549129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087063%2fby-cauchy-i-theorem-on-limits-of-sequence-i-am-getting-sequence-is-divergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51
$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03