By Cauchy I theorem on limits of sequence I am getting sequence is divergent












0












$begingroup$


By Cauchy II Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l



And , By Cauchy I Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l



Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as



$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$



But is not convergent by Cauchy I Theorem ,



Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$



taking logarithm on both sides ,we get



$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$



By using Cauchy I Theorem ,we get



$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$



$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $



$implies lim_{nto infty}log(t)=infty$



$t=e^{infty}=infty$



$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .



Hence sequence diverges !!



By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .



Please help me tell me where I am getting wrong !!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please type out the part relevant to the question using MathJax and do away with the image.
    $endgroup$
    – Swapnil Rustagi
    Jan 25 at 13:51










  • $begingroup$
    Please tell me, where i have done gone wrong .
    $endgroup$
    – sejy
    Jan 25 at 16:03
















0












$begingroup$


By Cauchy II Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l



And , By Cauchy I Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l



Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as



$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$



But is not convergent by Cauchy I Theorem ,



Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$



taking logarithm on both sides ,we get



$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$



By using Cauchy I Theorem ,we get



$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$



$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $



$implies lim_{nto infty}log(t)=infty$



$t=e^{infty}=infty$



$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .



Hence sequence diverges !!



By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .



Please help me tell me where I am getting wrong !!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please type out the part relevant to the question using MathJax and do away with the image.
    $endgroup$
    – Swapnil Rustagi
    Jan 25 at 13:51










  • $begingroup$
    Please tell me, where i have done gone wrong .
    $endgroup$
    – sejy
    Jan 25 at 16:03














0












0








0





$begingroup$


By Cauchy II Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l



And , By Cauchy I Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l



Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as



$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$



But is not convergent by Cauchy I Theorem ,



Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$



taking logarithm on both sides ,we get



$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$



By using Cauchy I Theorem ,we get



$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$



$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $



$implies lim_{nto infty}log(t)=infty$



$t=e^{infty}=infty$



$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .



Hence sequence diverges !!



By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .



Please help me tell me where I am getting wrong !!










share|cite|improve this question











$endgroup$




By Cauchy II Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



Then, $Lim_{ntoinfty}$$(S_{1}S_{2}$...$S_{n})^{frac{1}{n}}$=l



And , By Cauchy I Theorem on Limits ,



If $<S_{n}>$ is a sequence such that $S_{n}>0$ , $forall n$ and $Lim_{ntoinfty}S_{n}=l$



$Lim_{ntoinfty}$${frac{(S_{1}+S_{2}+...+S_{n})}{n}}$=l



Now, for $Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$ is convergent by using Cauchy II theorem ,as



$a_{n}=big(frac{1}{2}big)^{n} implies lim_{ntoinfty}a_{n}=big(frac{1}{2}big)^{n}=0$



But is not convergent by Cauchy I Theorem ,



Let $t= Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}$



taking logarithm on both sides ,we get



$log(t)={frac{1}{n}}Big[logbig(frac{1}{2}big)+logbig(frac{1}{2}big)^{2}+...+logbig(frac{1}{2}big)^{n}Big]$



By using Cauchy I Theorem ,we get



$a_{n}=logbig(frac{1}{2}big)^{n}=n * logbig(frac{1}{2}big)$



$Lim_{ntoinfty}a_{n}=Lim_{ntoinfty}n * logbig(frac{1}{2}big)=infty $



$implies lim_{nto infty}log(t)=infty$



$t=e^{infty}=infty$



$Lim_{ntoinfty}Big[big(frac{1}{2}big) big(frac{1}{2}big)^{2}...big(frac{1}{2}big)^{n}Big]^{frac{1}{n}}=infty$ .



Hence sequence diverges !!



By Cauchy I theorem on limits of sequence I am getting sequence is divergent and but using second I am getting it is convergent .



Please help me tell me where I am getting wrong !!







real-analysis sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 16:02







sejy

















asked Jan 25 at 12:40









sejysejy

1549




1549












  • $begingroup$
    Please type out the part relevant to the question using MathJax and do away with the image.
    $endgroup$
    – Swapnil Rustagi
    Jan 25 at 13:51










  • $begingroup$
    Please tell me, where i have done gone wrong .
    $endgroup$
    – sejy
    Jan 25 at 16:03


















  • $begingroup$
    Please type out the part relevant to the question using MathJax and do away with the image.
    $endgroup$
    – Swapnil Rustagi
    Jan 25 at 13:51










  • $begingroup$
    Please tell me, where i have done gone wrong .
    $endgroup$
    – sejy
    Jan 25 at 16:03
















$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51




$begingroup$
Please type out the part relevant to the question using MathJax and do away with the image.
$endgroup$
– Swapnil Rustagi
Jan 25 at 13:51












$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03




$begingroup$
Please tell me, where i have done gone wrong .
$endgroup$
– sejy
Jan 25 at 16:03










1 Answer
1






active

oldest

votes


















1












$begingroup$

$log(1/2) <0$ so
$nlog(1/2) to -infty$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087063%2fby-cauchy-i-theorem-on-limits-of-sequence-i-am-getting-sequence-is-divergent%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $log(1/2) <0$ so
    $nlog(1/2) to -infty$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $log(1/2) <0$ so
      $nlog(1/2) to -infty$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $log(1/2) <0$ so
        $nlog(1/2) to -infty$.






        share|cite|improve this answer









        $endgroup$



        $log(1/2) <0$ so
        $nlog(1/2) to -infty$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 25 at 16:13









        marty cohenmarty cohen

        74.4k549129




        74.4k549129






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087063%2fby-cauchy-i-theorem-on-limits-of-sequence-i-am-getting-sequence-is-divergent%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith