How to find integrating factor for this differential equation
$begingroup$
Solve this differential equation $dx/dt=x^2t^3+xt$
This is not exact.I don't find any way to solve this by integrating factor
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Solve this differential equation $dx/dt=x^2t^3+xt$
This is not exact.I don't find any way to solve this by integrating factor
ordinary-differential-equations
$endgroup$
1
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47
add a comment |
$begingroup$
Solve this differential equation $dx/dt=x^2t^3+xt$
This is not exact.I don't find any way to solve this by integrating factor
ordinary-differential-equations
$endgroup$
Solve this differential equation $dx/dt=x^2t^3+xt$
This is not exact.I don't find any way to solve this by integrating factor
ordinary-differential-equations
ordinary-differential-equations
asked Jan 25 at 14:07
Epsilon DeltaEpsilon Delta
876
876
1
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47
add a comment |
1
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47
1
1
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.
Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087135%2fhow-to-find-integrating-factor-for-this-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.
Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$
$endgroup$
add a comment |
$begingroup$
$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.
Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$
$endgroup$
add a comment |
$begingroup$
$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.
Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$
$endgroup$
$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.
Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$
answered Mar 11 at 17:10
JJacquelinJJacquelin
45k21855
45k21855
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087135%2fhow-to-find-integrating-factor-for-this-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47