How to find integrating factor for this differential equation












1












$begingroup$


Solve this differential equation $dx/dt=x^2t^3+xt$



This is not exact.I don't find any way to solve this by integrating factor










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
    $endgroup$
    – Dylan
    Jan 25 at 14:47
















1












$begingroup$


Solve this differential equation $dx/dt=x^2t^3+xt$



This is not exact.I don't find any way to solve this by integrating factor










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
    $endgroup$
    – Dylan
    Jan 25 at 14:47














1












1








1





$begingroup$


Solve this differential equation $dx/dt=x^2t^3+xt$



This is not exact.I don't find any way to solve this by integrating factor










share|cite|improve this question









$endgroup$




Solve this differential equation $dx/dt=x^2t^3+xt$



This is not exact.I don't find any way to solve this by integrating factor







ordinary-differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 25 at 14:07









Epsilon DeltaEpsilon Delta

876




876








  • 1




    $begingroup$
    This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
    $endgroup$
    – Dylan
    Jan 25 at 14:47














  • 1




    $begingroup$
    This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
    $endgroup$
    – Dylan
    Jan 25 at 14:47








1




1




$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47




$begingroup$
This is a Bernoulli equation. The standard method is to substitute $z = x^{-1}$
$endgroup$
– Dylan
Jan 25 at 14:47










1 Answer
1






active

oldest

votes


















0












$begingroup$

$$frac{dx}{dt}=x^2t^3+xt$$
$$(x^2t^3+xt)dt-dx=0$$
Solving thanks to the integrating factor method.



Let $mu(x,t)$ an integrating factor.
$$(x^2t^3+xt)mu dt-mu dx=0$$
The condition to be an exact differential is :
$$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
$$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
$mu(x,t)=f(x)g(t)$
$$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
$$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
The separation of variables becomes possible if
$$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
Then
$$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
$$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
An integrator factor is :
$$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
From this it is easy to solve the ODE. The result is :
$$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
$$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087135%2fhow-to-find-integrating-factor-for-this-differential-equation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $$frac{dx}{dt}=x^2t^3+xt$$
    $$(x^2t^3+xt)dt-dx=0$$
    Solving thanks to the integrating factor method.



    Let $mu(x,t)$ an integrating factor.
    $$(x^2t^3+xt)mu dt-mu dx=0$$
    The condition to be an exact differential is :
    $$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
    $$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
    In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
    $mu(x,t)=f(x)g(t)$
    $$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
    $$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
    The separation of variables becomes possible if
    $$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
    Then
    $$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
    $$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
    An integrator factor is :
    $$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
    From this it is easy to solve the ODE. The result is :
    $$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
    $$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $$frac{dx}{dt}=x^2t^3+xt$$
      $$(x^2t^3+xt)dt-dx=0$$
      Solving thanks to the integrating factor method.



      Let $mu(x,t)$ an integrating factor.
      $$(x^2t^3+xt)mu dt-mu dx=0$$
      The condition to be an exact differential is :
      $$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
      $$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
      In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
      $mu(x,t)=f(x)g(t)$
      $$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
      $$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
      The separation of variables becomes possible if
      $$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
      Then
      $$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
      $$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
      An integrator factor is :
      $$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
      From this it is easy to solve the ODE. The result is :
      $$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
      $$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $$frac{dx}{dt}=x^2t^3+xt$$
        $$(x^2t^3+xt)dt-dx=0$$
        Solving thanks to the integrating factor method.



        Let $mu(x,t)$ an integrating factor.
        $$(x^2t^3+xt)mu dt-mu dx=0$$
        The condition to be an exact differential is :
        $$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
        $$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
        In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
        $mu(x,t)=f(x)g(t)$
        $$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
        $$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
        The separation of variables becomes possible if
        $$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
        Then
        $$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
        $$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
        An integrator factor is :
        $$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
        From this it is easy to solve the ODE. The result is :
        $$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
        $$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$






        share|cite|improve this answer









        $endgroup$



        $$frac{dx}{dt}=x^2t^3+xt$$
        $$(x^2t^3+xt)dt-dx=0$$
        Solving thanks to the integrating factor method.



        Let $mu(x,t)$ an integrating factor.
        $$(x^2t^3+xt)mu dt-mu dx=0$$
        The condition to be an exact differential is :
        $$frac{partial}{partial x}left((x^2t^3+xt)mu right) = frac{partial}{partial t}(-mu)$$
        $$frac{partial mu}{partial t}+(x^2t^3+xt)frac{partial mu}{partial x}+(2xt^3+t)mu=0$$
        In the most simple cases $mu(x,t)$ is on the form $f(x)$ or $g(t)$ or $h(xt)$. But in the present case, trying those forms of $mu(x,y)$ fails. So, we try a more general form, for example
        $mu(x,t)=f(x)g(t)$
        $$f(x)frac{dg}{dt}+(x^2t^3+xt)g(t)frac{df}{dx}+(2xt^3+t)f(x)g(t)=0$$
        $$frac{1}{tg(t)}frac{dg}{dt}+(xt^2+1)frac{x}{f(x)}frac{df}{dx}+(2xt^2+1)=0$$
        The separation of variables becomes possible if
        $$xt^2frac{x}{f(x)}frac{df}{dx}+2xt^2=0quadimpliesquad frac{x}{f(x)}frac{df}{dx}=-2quadimpliesquad f(x)=frac{1}{x^2}$$
        Then
        $$frac{1}{tg(t)}frac{dg}{dt}+frac{x}{f(x)}frac{df}{dx}+1=0 quad;quad frac{1}{tg(t)}frac{dg}{dt}-2+1=0$$
        $$frac{1}{g(t)}frac{dg}{dt}=tquadimpliesquad g(t)=e^{t^2/2}$$
        An integrator factor is :
        $$mu(x,t)=frac{e^{t^2/2}}{x^2}$$
        From this it is easy to solve the ODE. The result is :
        $$e^{t^2/2}left(frac{1}{x}+t^2-2 right)=c$$
        $$x(t)=frac{-1}{2-t^2+c:e^{-t^2/2}}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 11 at 17:10









        JJacquelinJJacquelin

        45k21855




        45k21855






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087135%2fhow-to-find-integrating-factor-for-this-differential-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$