Joint Distribution of two dependent Bernoulli Random Variables for $rho=1$












0












$begingroup$


Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.



If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$

When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.



So can $(2)$ even be correct? What am I missing?





Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.










share|cite|improve this question









$endgroup$












  • $begingroup$
    "we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
    $endgroup$
    – JimB
    Jan 25 at 14:36


















0












$begingroup$


Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.



If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$

When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.



So can $(2)$ even be correct? What am I missing?





Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.










share|cite|improve this question









$endgroup$












  • $begingroup$
    "we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
    $endgroup$
    – JimB
    Jan 25 at 14:36
















0












0








0


1



$begingroup$


Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.



If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$

When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.



So can $(2)$ even be correct? What am I missing?





Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.










share|cite|improve this question









$endgroup$




Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.



If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$

When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.



So can $(2)$ even be correct? What am I missing?





Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.







probability-distributions random-variables correlation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 25 at 13:30









Phil-ZXXPhil-ZXX

1,33611538




1,33611538












  • $begingroup$
    "we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
    $endgroup$
    – JimB
    Jan 25 at 14:36




















  • $begingroup$
    "we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
    $endgroup$
    – JimB
    Jan 25 at 14:36


















$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36






$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36












1 Answer
1






active

oldest

votes


















1












$begingroup$

The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.



Using the definition of a correlation coefficient



$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$



and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):



sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)], 
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]


$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$



ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]


Contour plot of maximum rho



In short, $rho=1$ can only occur when $p_1=p_2$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087099%2fjoint-distribution-of-two-dependent-bernoulli-random-variables-for-rho-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.



    Using the definition of a correlation coefficient



    $$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$



    and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):



    sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)], 
    0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]


    $$begin{array}{cc}
    { &
    begin{array}{cc}
    sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
    sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
    -infty & text{True} \
    end{array}
    \
    end{array}$$



    ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]


    Contour plot of maximum rho



    In short, $rho=1$ can only occur when $p_1=p_2$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.



      Using the definition of a correlation coefficient



      $$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$



      and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):



      sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)], 
      0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]


      $$begin{array}{cc}
      { &
      begin{array}{cc}
      sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
      sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
      -infty & text{True} \
      end{array}
      \
      end{array}$$



      ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]


      Contour plot of maximum rho



      In short, $rho=1$ can only occur when $p_1=p_2$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.



        Using the definition of a correlation coefficient



        $$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$



        and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):



        sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)], 
        0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]


        $$begin{array}{cc}
        { &
        begin{array}{cc}
        sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
        sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
        -infty & text{True} \
        end{array}
        \
        end{array}$$



        ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]


        Contour plot of maximum rho



        In short, $rho=1$ can only occur when $p_1=p_2$.






        share|cite|improve this answer











        $endgroup$



        The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.



        Using the definition of a correlation coefficient



        $$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$



        and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):



        sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)], 
        0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]


        $$begin{array}{cc}
        { &
        begin{array}{cc}
        sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
        sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
        -infty & text{True} \
        end{array}
        \
        end{array}$$



        ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]


        Contour plot of maximum rho



        In short, $rho=1$ can only occur when $p_1=p_2$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 26 at 1:34

























        answered Jan 25 at 17:30









        JimBJimB

        58037




        58037






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087099%2fjoint-distribution-of-two-dependent-bernoulli-random-variables-for-rho-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]