Joint Distribution of two dependent Bernoulli Random Variables for $rho=1$
$begingroup$
Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.
If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$
When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.
So can $(2)$ even be correct? What am I missing?
Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.
probability-distributions random-variables correlation
$endgroup$
add a comment |
$begingroup$
Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.
If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$
When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.
So can $(2)$ even be correct? What am I missing?
Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.
probability-distributions random-variables correlation
$endgroup$
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36
add a comment |
$begingroup$
Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.
If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$
When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.
So can $(2)$ even be correct? What am I missing?
Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.
probability-distributions random-variables correlation
$endgroup$
Say we have two random variables $Xsim B(p_1), Ysim B(p_2)$ where $B(p)=$ Bernoulli with probability $0le ple 1$. I am interested in the case when the correlation $rho$ of $X,Y$ tends to $1$.
If we set events $A={X=1}$, $B={Y=1}$, the conditional probability property gives us
$$begin{align}tag{1}
P(Acap B) = P(Amid B)cdot P(B)\ = P(Bmid A)cdot P(A)
end{align}$$
When $rho=1$ we must have $P(Amid B)=P(Bmid A)=1$ (since one event implies the other). Equation $(1)$ then yields
$$P(A) = P(B)$$
Furthermore, if correlation is high (= tending to 1), then whenever event $A$ occurs then $B$ must also occur (and vice versa). So the probabilities of $A,B$ should be
$$P(A)=P(B)=max(p_1,p_2)tag{2}$$
However, for any $rho=1-epsilon$ with $epsilon>0$, we still have $P(A)=p_1$ and $P(B)=p_2$ as per definition.
So can $(2)$ even be correct? What am I missing?
Unfortunately, Joint distribution of dependent Bernoulli Random variables only discusses non-deterministic sequences, so it doesn't quite apply.
probability-distributions random-variables correlation
probability-distributions random-variables correlation
asked Jan 25 at 13:30
Phil-ZXXPhil-ZXX
1,33611538
1,33611538
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36
add a comment |
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.
Using the definition of a correlation coefficient
$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$
and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):
sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)],
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]
$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$
ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]
In short, $rho=1$ can only occur when $p_1=p_2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087099%2fjoint-distribution-of-two-dependent-bernoulli-random-variables-for-rho-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.
Using the definition of a correlation coefficient
$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$
and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):
sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)],
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]
$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$
ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]
In short, $rho=1$ can only occur when $p_1=p_2$.
$endgroup$
add a comment |
$begingroup$
The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.
Using the definition of a correlation coefficient
$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$
and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):
sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)],
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]
$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$
ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]
In short, $rho=1$ can only occur when $p_1=p_2$.
$endgroup$
add a comment |
$begingroup$
The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.
Using the definition of a correlation coefficient
$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$
and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):
sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)],
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]
$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$
ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]
In short, $rho=1$ can only occur when $p_1=p_2$.
$endgroup$
The apparent inconsistency is due to the fact that $rho$ cannot take on all values between $-1$ and $1$ given specific values for $p_1$ and $p_2$.
Using the definition of a correlation coefficient
$$rho={{Cov(x_1,x_2)} over {sqrt{Var(x_1)Var(x_2)}}}={{text{Pr}(x_1=1,x_2=1)-p_1 p_2}over{sqrt{p_1(1-p_1)p_2(1-p_2)}}}$$
and noting that $text{Pr}(x_1=1,x_2=1)leq text{Min}(p_1,p_2)$ we can find the maximum value of $rho$ for all possible values of $p_1$ and $p_2$ (here using Mathematica):
sol = Maximize[{(P11 - p1 p2)/Sqrt[p1 (1 - p1) p2 (1 - p2)],
0 < p1 < 1 && 0 < p2 < 1 && 0 < P11 <= Min[p1, p2]}, P11][[1]]
$$begin{array}{cc}
{ &
begin{array}{cc}
sqrt{frac{text{p1} (text{p2}-1)}{(text{p1}-1) text{p2}}} & left(0<text{p2}<frac{1}{2}land 0<text{p1}leq text{p2}right)lor left(frac{1}{2}leq text{p2}<1land text{p1}=text{p2}right)lor left(frac{1}{2}leq text{p2}<1land 0<text{p1}<text{p2}right) \
sqrt{frac{(text{p1}-1) text{p2}}{text{p1} (text{p2}-1)}} & left(0<text{p2}<frac{1}{2}land text{p2}<text{p1}<1right)lor left(frac{1}{2}leq text{p2}<1land text{p2}<text{p1}<1right) \
-infty & text{True} \
end{array}
\
end{array}$$
ContourPlot[sol, {p1, 0, 1}, {p2, 0, 1}, ContourLabels -> True]
In short, $rho=1$ can only occur when $p_1=p_2$.
edited Jan 26 at 1:34
answered Jan 25 at 17:30
JimBJimB
58037
58037
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087099%2fjoint-distribution-of-two-dependent-bernoulli-random-variables-for-rho-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"we still have $P(A)=p_1$ and $P(B)=p_2$". Try $p_1=0.2$ and $p_2=0.8$ and try to get a value of $rho$ being 0.9. Can't do it. Given $p_1$ and $p_2$, there are certain values of $rho$ that can't be obtained. So you can't fix $p_1$ and $p_2$ and take the limit of $rho$ -> $1$. Hint: start with the definition of $rho$.
$endgroup$
– JimB
Jan 25 at 14:36