Calculate an orthonormal basis












0












$begingroup$


We have the following Gram-Schmidt algorithm:



enter image description here



I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



I have done the following:





  • $i=1$ :


begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}



We don't enter the inner for loop.



Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.





  • $i=2$ :


begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}



At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}





  • $i=3$ :


begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



At the inner for loop we have $j=1$ and $j=2$.



For $j=1$ we get:



begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}



For $j=2$ we get:



begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}



After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}



$$$$



Is everything correct?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    We have the following Gram-Schmidt algorithm:



    enter image description here



    I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
    begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



    I have done the following:





    • $i=1$ :


    begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}



    We don't enter the inner for loop.



    Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.





    • $i=2$ :


    begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}



    At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
    After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}





    • $i=3$ :


    begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



    At the inner for loop we have $j=1$ and $j=2$.



    For $j=1$ we get:



    begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}



    For $j=2$ we get:



    begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}



    After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}



    $$$$



    Is everything correct?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      We have the following Gram-Schmidt algorithm:



      enter image description here



      I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
      begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



      I have done the following:





      • $i=1$ :


      begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}



      We don't enter the inner for loop.



      Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.





      • $i=2$ :


      begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}



      At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
      After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}





      • $i=3$ :


      begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



      At the inner for loop we have $j=1$ and $j=2$.



      For $j=1$ we get:



      begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}



      For $j=2$ we get:



      begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}



      After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}



      $$$$



      Is everything correct?










      share|cite|improve this question









      $endgroup$




      We have the following Gram-Schmidt algorithm:



      enter image description here



      I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
      begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



      I have done the following:





      • $i=1$ :


      begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}



      We don't enter the inner for loop.



      Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.





      • $i=2$ :


      begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}



      At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
      After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}





      • $i=3$ :


      begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}



      At the inner for loop we have $j=1$ and $j=2$.



      For $j=1$ we get:



      begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}



      For $j=2$ we get:



      begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}



      After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}



      $$$$



      Is everything correct?







      orthonormal gram-schmidt






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 27 at 13:41









      Mary StarMary Star

      3,11782475




      3,11782475






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089569%2fcalculate-an-orthonormal-basis%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089569%2fcalculate-an-orthonormal-basis%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith