Calculate an orthonormal basis
$begingroup$
We have the following Gram-Schmidt algorithm:
I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
I have done the following:
$i=1$ :
begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}
We don't enter the inner for loop.
Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.
$i=2$ :
begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}
At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
$i=3$ :
begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
At the inner for loop we have $j=1$ and $j=2$.
For $j=1$ we get:
begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}
For $j=2$ we get:
begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}
$$$$
Is everything correct?
orthonormal gram-schmidt
$endgroup$
add a comment |
$begingroup$
We have the following Gram-Schmidt algorithm:
I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
I have done the following:
$i=1$ :
begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}
We don't enter the inner for loop.
Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.
$i=2$ :
begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}
At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
$i=3$ :
begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
At the inner for loop we have $j=1$ and $j=2$.
For $j=1$ we get:
begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}
For $j=2$ we get:
begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}
$$$$
Is everything correct?
orthonormal gram-schmidt
$endgroup$
add a comment |
$begingroup$
We have the following Gram-Schmidt algorithm:
I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
I have done the following:
$i=1$ :
begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}
We don't enter the inner for loop.
Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.
$i=2$ :
begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}
At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
$i=3$ :
begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
At the inner for loop we have $j=1$ and $j=2$.
For $j=1$ we get:
begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}
For $j=2$ we get:
begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}
$$$$
Is everything correct?
orthonormal gram-schmidt
$endgroup$
We have the following Gram-Schmidt algorithm:
I want to calculate for the following vectors an orthonormal basis, with an accuracy of $epsilon=5cdot 10^{-3}$.
begin{equation*}a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}, a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}, a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
I have done the following:
$i=1$ :
begin{equation*}q_1=a_1=begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}end{equation*}
We don't enter the inner for loop.
Then $r_{11}=|q_1|_2=sqrt{1+2cdot 10^{-6}}$ and so $q_1=frac{q_1}{r_1}=frac{1}{sqrt{1+2cdot 10^{-6}}}begin{pmatrix}1 \ 10^{-3} \ 10^{-3}end{pmatrix}$.
$i=2$ :
begin{equation*}q_2=a_2=begin{pmatrix}1 \ 10^{-3} \ 0end{pmatrix}end{equation*}
At the inner loop we have for $j=1$ : begin{equation*}r_{12}=q_1^Tcdot a_2=frac{sqrt{1+ 10^{-6}}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_2=q_2-r_{12}cdot q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{22}=|q_2|_2=frac{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}{1+2cdot 10^{-6}}end{equation*} and begin{equation*}q_2=frac{q_2}{r_{22}}=frac{1}{sqrt{3cdot 10^{-2}+2cdot 10^{-18}+10^{-6}}}begin{pmatrix}10^{-6} \ 10^{-9} \ -10^{-3}-10^{-9}end{pmatrix}end{equation*}
$i=3$ :
begin{equation*}q_3=a_3=begin{pmatrix}1 \ 0 \ 10^{-3}end{pmatrix}end{equation*}
At the inner for loop we have $j=1$ and $j=2$.
For $j=1$ we get:
begin{equation*}r_{13}=q_1^Ta_3=frac{1+10^{-6}}{sqrt{1+2cdot 10^{-6}}} text{ and } q_3=q_3-r_{13}q_1=frac{1}{1+2cdot 10^{-6}}begin{pmatrix}10^{-6} \ -10^{-3}-10^{-9} \ 10^{-9}end{pmatrix}end{equation*}
For $j=2$ we get:
begin{equation*}r_{23}=q_2^Ta_3=frac{-10^{-12}}{sqrt{3cdot 10^{-12}+2cdot 10^{-18}+10^{-6}}}end{equation*} and begin{equation*}q_3=q_3-r_{23}q_2=frac{1}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}begin{pmatrix}4cdot 10^{-6}+4cdot 10^{-12}+1\ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3} \ 0end{pmatrix}end{equation*}
After the inner for loop we have begin{equation*}r_{33}=|q_3|_2=frac{[4cdot 10^{-6}+4cdot 10^{-12}+1]^2+[ -4cdot 10^{-3}-4cdot 10^{-9}-10^{-3}]^2}{(1+2cdot 10^{-6})(3+2cdot 10^{-6}+10^6)}end{equation*} and begin{equation*}q_3=frac{q_3}{r_{33}}end{equation*}
$$$$
Is everything correct?
orthonormal gram-schmidt
orthonormal gram-schmidt
asked Jan 27 at 13:41
Mary StarMary Star
3,11782475
3,11782475
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089569%2fcalculate-an-orthonormal-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089569%2fcalculate-an-orthonormal-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown