Covariance Identity: $DeclareMathOperator{Cov}{Cov}Cov(X,Y) = E(Cov(X,Ymid Z)) + Cov(E(Xmid Z),E(Ymid Z))$












2












$begingroup$


How can I show that:



$Cov(X,Y) = E(Cov(X,Ymid Z)) + Cov(E(Xmid Z),E(Ymid Z))$?



With $X, Y$ and $Z;$ r.v with finite variances.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
    $endgroup$
    – Anvit
    Jan 26 at 16:36
















2












$begingroup$


How can I show that:



$Cov(X,Y) = E(Cov(X,Ymid Z)) + Cov(E(Xmid Z),E(Ymid Z))$?



With $X, Y$ and $Z;$ r.v with finite variances.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
    $endgroup$
    – Anvit
    Jan 26 at 16:36














2












2








2


1



$begingroup$


How can I show that:



$Cov(X,Y) = E(Cov(X,Ymid Z)) + Cov(E(Xmid Z),E(Ymid Z))$?



With $X, Y$ and $Z;$ r.v with finite variances.










share|cite|improve this question











$endgroup$




How can I show that:



$Cov(X,Y) = E(Cov(X,Ymid Z)) + Cov(E(Xmid Z),E(Ymid Z))$?



With $X, Y$ and $Z;$ r.v with finite variances.







probability probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 16:31









Bernard

123k741117




123k741117










asked Jan 26 at 16:02









LauraLaura

3518




3518












  • $begingroup$
    If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
    $endgroup$
    – Anvit
    Jan 26 at 16:36


















  • $begingroup$
    If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
    $endgroup$
    – Anvit
    Jan 26 at 16:36
















$begingroup$
If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
$endgroup$
– Anvit
Jan 26 at 16:36




$begingroup$
If you want to try this yourself with a hint, search for 'This follows directly from the tower property' on this page isical.ac.in/~arnabc/prob1/condl.html
$endgroup$
– Anvit
Jan 26 at 16:36










1 Answer
1






active

oldest

votes


















2












$begingroup$

Here's a ugly looking jumble of Expectations



$$begin{align}E[DeclareMathOperator{Cov}{Cov}Cov[X,Y|Z]]&=E[E[XY|Z]-E[X|Z]E[Y|Z]]\[2ex]
&=E[E[XY|Z]]-E[E[X|Z]E[Y|Z]]\[2ex]
&=E[XY]-E[E[X|Z]E[Y|Z]]
end{align}$$

Similarly,
$$begin{align}
Cov[E[X|Z],E[Y|Z]]&=E[E[X|Z]E[Y|Z]]-E[E[X|Z]]E[E[Y|Z]]\[2ex]
&=E[E[X|Z]E[Y|Z]]-E[X]E[Y]\[2ex]
end{align}$$



Add the two results to get the desired result. This proof utilizes the tower property. A simple version of which is $E[E[X|Y]]=E[X].$ Here is the wikipage Tower Property






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088413%2fcovariance-identity-declaremathoperator-covcov-covx-y-e-covx-y-mid%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Here's a ugly looking jumble of Expectations



    $$begin{align}E[DeclareMathOperator{Cov}{Cov}Cov[X,Y|Z]]&=E[E[XY|Z]-E[X|Z]E[Y|Z]]\[2ex]
    &=E[E[XY|Z]]-E[E[X|Z]E[Y|Z]]\[2ex]
    &=E[XY]-E[E[X|Z]E[Y|Z]]
    end{align}$$

    Similarly,
    $$begin{align}
    Cov[E[X|Z],E[Y|Z]]&=E[E[X|Z]E[Y|Z]]-E[E[X|Z]]E[E[Y|Z]]\[2ex]
    &=E[E[X|Z]E[Y|Z]]-E[X]E[Y]\[2ex]
    end{align}$$



    Add the two results to get the desired result. This proof utilizes the tower property. A simple version of which is $E[E[X|Y]]=E[X].$ Here is the wikipage Tower Property






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Here's a ugly looking jumble of Expectations



      $$begin{align}E[DeclareMathOperator{Cov}{Cov}Cov[X,Y|Z]]&=E[E[XY|Z]-E[X|Z]E[Y|Z]]\[2ex]
      &=E[E[XY|Z]]-E[E[X|Z]E[Y|Z]]\[2ex]
      &=E[XY]-E[E[X|Z]E[Y|Z]]
      end{align}$$

      Similarly,
      $$begin{align}
      Cov[E[X|Z],E[Y|Z]]&=E[E[X|Z]E[Y|Z]]-E[E[X|Z]]E[E[Y|Z]]\[2ex]
      &=E[E[X|Z]E[Y|Z]]-E[X]E[Y]\[2ex]
      end{align}$$



      Add the two results to get the desired result. This proof utilizes the tower property. A simple version of which is $E[E[X|Y]]=E[X].$ Here is the wikipage Tower Property






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Here's a ugly looking jumble of Expectations



        $$begin{align}E[DeclareMathOperator{Cov}{Cov}Cov[X,Y|Z]]&=E[E[XY|Z]-E[X|Z]E[Y|Z]]\[2ex]
        &=E[E[XY|Z]]-E[E[X|Z]E[Y|Z]]\[2ex]
        &=E[XY]-E[E[X|Z]E[Y|Z]]
        end{align}$$

        Similarly,
        $$begin{align}
        Cov[E[X|Z],E[Y|Z]]&=E[E[X|Z]E[Y|Z]]-E[E[X|Z]]E[E[Y|Z]]\[2ex]
        &=E[E[X|Z]E[Y|Z]]-E[X]E[Y]\[2ex]
        end{align}$$



        Add the two results to get the desired result. This proof utilizes the tower property. A simple version of which is $E[E[X|Y]]=E[X].$ Here is the wikipage Tower Property






        share|cite|improve this answer











        $endgroup$



        Here's a ugly looking jumble of Expectations



        $$begin{align}E[DeclareMathOperator{Cov}{Cov}Cov[X,Y|Z]]&=E[E[XY|Z]-E[X|Z]E[Y|Z]]\[2ex]
        &=E[E[XY|Z]]-E[E[X|Z]E[Y|Z]]\[2ex]
        &=E[XY]-E[E[X|Z]E[Y|Z]]
        end{align}$$

        Similarly,
        $$begin{align}
        Cov[E[X|Z],E[Y|Z]]&=E[E[X|Z]E[Y|Z]]-E[E[X|Z]]E[E[Y|Z]]\[2ex]
        &=E[E[X|Z]E[Y|Z]]-E[X]E[Y]\[2ex]
        end{align}$$



        Add the two results to get the desired result. This proof utilizes the tower property. A simple version of which is $E[E[X|Y]]=E[X].$ Here is the wikipage Tower Property







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 26 at 17:16









        Antoni Parellada

        3,10421341




        3,10421341










        answered Jan 26 at 16:51









        AnvitAnvit

        1,733419




        1,733419






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088413%2fcovariance-identity-declaremathoperator-covcov-covx-y-e-covx-y-mid%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]