How to Define the Display Matrix from two linear mappings
$begingroup$
I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$
$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$
$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$
Thank you for any hint :)
Definition of the display matrix
linear-algebra matrices mathematica popular-math
$endgroup$
add a comment |
$begingroup$
I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$
$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$
$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$
Thank you for any hint :)
Definition of the display matrix
linear-algebra matrices mathematica popular-math
$endgroup$
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08
add a comment |
$begingroup$
I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$
$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$
$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$
Thank you for any hint :)
Definition of the display matrix
linear-algebra matrices mathematica popular-math
$endgroup$
I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$
$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$
$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$
Thank you for any hint :)
Definition of the display matrix
linear-algebra matrices mathematica popular-math
linear-algebra matrices mathematica popular-math
edited Jan 26 at 18:02
dean
asked Jan 26 at 16:26
deandean
11
11
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08
add a comment |
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088445%2fhow-to-define-the-display-matrix-from-two-linear-mappings%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088445%2fhow-to-define-the-display-matrix-from-two-linear-mappings%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24
$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02
$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08