How to Define the Display Matrix from two linear mappings












0












$begingroup$


I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$

$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$

$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$



Thank you for any hint :)
Definition of the display matrix










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know the definition of a display matrix?
    $endgroup$
    – user635162
    Jan 26 at 17:24










  • $begingroup$
    Yes sure, I added it as a picture in the main question.
    $endgroup$
    – dean
    Jan 26 at 18:02










  • $begingroup$
    Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
    $endgroup$
    – user635162
    Jan 26 at 18:08


















0












$begingroup$


I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$

$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$

$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$



Thank you for any hint :)
Definition of the display matrix










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you know the definition of a display matrix?
    $endgroup$
    – user635162
    Jan 26 at 17:24










  • $begingroup$
    Yes sure, I added it as a picture in the main question.
    $endgroup$
    – dean
    Jan 26 at 18:02










  • $begingroup$
    Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
    $endgroup$
    – user635162
    Jan 26 at 18:08
















0












0








0





$begingroup$


I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$

$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$

$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$



Thank you for any hint :)
Definition of the display matrix










share|cite|improve this question











$endgroup$




I'm working right now on this task, but i dont't know how to start,
Im glad for every hint, I hope we can solve this task together
$$ Given , are , the , following , ordered , Bases , of , mathbb{R²}, mathbb{R³} , and , mathbb{R⁴}$$
$$
B₂=
begin{pmatrix}
1 \
0
end{pmatrix}
,
begin{pmatrix}
0 \
1
end{pmatrix}
quad
B₃=
begin{pmatrix}
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
end{pmatrix}
quad
B₄=
begin{pmatrix}
1 \
1 \
1 \
1 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
1 \
0 \
end{pmatrix}
,
begin{pmatrix}
1 \
1 \
0 \
0 \end{pmatrix}
,
begin{pmatrix}
1 \
0 \
0 \
0 \end{pmatrix}
$$

$$ Let , us , consider , now , two , linear , mappings , varphi:mathbb{R²} → mathbb{R³} , , psi: mathbb{R³} , → , mathbb{R⁴} $$
$$
varphi
begin{pmatrix}
v1 \
v2
end{pmatrix}
=
begin{pmatrix}
v1 - v2 \
0 \
2v1 - v2
end{pmatrix}
quad
and , psi
begin{pmatrix}
v1\
v2 \
v3 \
end{pmatrix}
=
begin{pmatrix}
v₁ + 2v₃ \
v₂ - v₃ \
v₁ + v₂ \
2v₁ + 3v₃ \
end{pmatrix}
$$

$$ Define , the , display , matrix , M
begin{matrix}
B₂ \
B₃
end{matrix}
(varphi), , M
begin{matrix}
B₃ \
B₄
end{matrix}
(psi) , and , M
begin{matrix}
B₂ \
B₄
end{matrix}
(psi , ○ , varphi)
$$



Thank you for any hint :)
Definition of the display matrix







linear-algebra matrices mathematica popular-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 18:02







dean

















asked Jan 26 at 16:26









deandean

11




11












  • $begingroup$
    Do you know the definition of a display matrix?
    $endgroup$
    – user635162
    Jan 26 at 17:24










  • $begingroup$
    Yes sure, I added it as a picture in the main question.
    $endgroup$
    – dean
    Jan 26 at 18:02










  • $begingroup$
    Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
    $endgroup$
    – user635162
    Jan 26 at 18:08




















  • $begingroup$
    Do you know the definition of a display matrix?
    $endgroup$
    – user635162
    Jan 26 at 17:24










  • $begingroup$
    Yes sure, I added it as a picture in the main question.
    $endgroup$
    – dean
    Jan 26 at 18:02










  • $begingroup$
    Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
    $endgroup$
    – user635162
    Jan 26 at 18:08


















$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24




$begingroup$
Do you know the definition of a display matrix?
$endgroup$
– user635162
Jan 26 at 17:24












$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02




$begingroup$
Yes sure, I added it as a picture in the main question.
$endgroup$
– dean
Jan 26 at 18:02












$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08






$begingroup$
Then just apply it. Put each basis vector into the function and write the corresponding image as a linear combination of the other basis. The coefficients of that linear combination are then the entries of the matrix, just as the definition states.
$endgroup$
– user635162
Jan 26 at 18:08












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088445%2fhow-to-define-the-display-matrix-from-two-linear-mappings%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088445%2fhow-to-define-the-display-matrix-from-two-linear-mappings%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]