For which values of $a$ we will get two different roots?












1












$begingroup$


In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$

For which values of $a$ we will get two different roots?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use the fact that we get two different real roots when $b^2-4ac gt 0.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 26 at 16:31










  • $begingroup$
    What do you need the first inequality for?
    $endgroup$
    – Dr. Mathva
    Jan 26 at 16:43
















1












$begingroup$


In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$

For which values of $a$ we will get two different roots?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use the fact that we get two different real roots when $b^2-4ac gt 0.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 26 at 16:31










  • $begingroup$
    What do you need the first inequality for?
    $endgroup$
    – Dr. Mathva
    Jan 26 at 16:43














1












1








1





$begingroup$


In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$

For which values of $a$ we will get two different roots?










share|cite|improve this question











$endgroup$




In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$

For which values of $a$ we will get two different roots?







systems-of-equations roots quadratics absolute-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 16:49









Michael Rozenberg

108k1895200




108k1895200










asked Jan 26 at 16:29









StackUserStackUser

61




61












  • $begingroup$
    Use the fact that we get two different real roots when $b^2-4ac gt 0.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 26 at 16:31










  • $begingroup$
    What do you need the first inequality for?
    $endgroup$
    – Dr. Mathva
    Jan 26 at 16:43


















  • $begingroup$
    Use the fact that we get two different real roots when $b^2-4ac gt 0.$
    $endgroup$
    – Mohammad Zuhair Khan
    Jan 26 at 16:31










  • $begingroup$
    What do you need the first inequality for?
    $endgroup$
    – Dr. Mathva
    Jan 26 at 16:43
















$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31




$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31












$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43




$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43










2 Answers
2






active

oldest

votes


















1












$begingroup$

The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Why you want that $f(-frac{1}{3}) > 0 $ ?
    $endgroup$
    – StackUser
    Jan 26 at 21:31










  • $begingroup$
    @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
    $endgroup$
    – Michael Rozenberg
    Jan 26 at 21:38





















0












$begingroup$

The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.



Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.



So if $frac43<a<2$, the equation has two different roots satisfying the inequality.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088452%2ffor-which-values-of-a-we-will-get-two-different-roots%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The first gives
    $$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
    Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
    $$fleft(-frac{1}{3}right)>0$$
    $$-frac{a}{2}<-frac{1}{3}$$ and
    $$a^2-4(a-1)>0.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Why you want that $f(-frac{1}{3}) > 0 $ ?
      $endgroup$
      – StackUser
      Jan 26 at 21:31










    • $begingroup$
      @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
      $endgroup$
      – Michael Rozenberg
      Jan 26 at 21:38


















    1












    $begingroup$

    The first gives
    $$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
    Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
    $$fleft(-frac{1}{3}right)>0$$
    $$-frac{a}{2}<-frac{1}{3}$$ and
    $$a^2-4(a-1)>0.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Why you want that $f(-frac{1}{3}) > 0 $ ?
      $endgroup$
      – StackUser
      Jan 26 at 21:31










    • $begingroup$
      @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
      $endgroup$
      – Michael Rozenberg
      Jan 26 at 21:38
















    1












    1








    1





    $begingroup$

    The first gives
    $$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
    Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
    $$fleft(-frac{1}{3}right)>0$$
    $$-frac{a}{2}<-frac{1}{3}$$ and
    $$a^2-4(a-1)>0.$$






    share|cite|improve this answer









    $endgroup$



    The first gives
    $$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
    Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
    $$fleft(-frac{1}{3}right)>0$$
    $$-frac{a}{2}<-frac{1}{3}$$ and
    $$a^2-4(a-1)>0.$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 26 at 16:45









    Michael RozenbergMichael Rozenberg

    108k1895200




    108k1895200












    • $begingroup$
      Why you want that $f(-frac{1}{3}) > 0 $ ?
      $endgroup$
      – StackUser
      Jan 26 at 21:31










    • $begingroup$
      @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
      $endgroup$
      – Michael Rozenberg
      Jan 26 at 21:38




















    • $begingroup$
      Why you want that $f(-frac{1}{3}) > 0 $ ?
      $endgroup$
      – StackUser
      Jan 26 at 21:31










    • $begingroup$
      @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
      $endgroup$
      – Michael Rozenberg
      Jan 26 at 21:38


















    $begingroup$
    Why you want that $f(-frac{1}{3}) > 0 $ ?
    $endgroup$
    – StackUser
    Jan 26 at 21:31




    $begingroup$
    Why you want that $f(-frac{1}{3}) > 0 $ ?
    $endgroup$
    – StackUser
    Jan 26 at 21:31












    $begingroup$
    @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
    $endgroup$
    – Michael Rozenberg
    Jan 26 at 21:38






    $begingroup$
    @StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
    $endgroup$
    – Michael Rozenberg
    Jan 26 at 21:38













    0












    $begingroup$

    The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.



    Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
    $$ |a|>4-2a. tag{1}$$
    If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.



    So if $frac43<a<2$, the equation has two different roots satisfying the inequality.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.



      Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
      $$ |a|>4-2a. tag{1}$$
      If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.



      So if $frac43<a<2$, the equation has two different roots satisfying the inequality.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.



        Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
        $$ |a|>4-2a. tag{1}$$
        If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.



        So if $frac43<a<2$, the equation has two different roots satisfying the inequality.






        share|cite|improve this answer









        $endgroup$



        The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.



        Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
        $$ |a|>4-2a. tag{1}$$
        If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.



        So if $frac43<a<2$, the equation has two different roots satisfying the inequality.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 26 at 16:52









        xpaulxpaul

        23.3k24655




        23.3k24655






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088452%2ffor-which-values-of-a-we-will-get-two-different-roots%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]