For which values of $a$ we will get two different roots?
$begingroup$
In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$
For which values of $a$ we will get two different roots?
systems-of-equations roots quadratics absolute-value
$endgroup$
add a comment |
$begingroup$
In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$
For which values of $a$ we will get two different roots?
systems-of-equations roots quadratics absolute-value
$endgroup$
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43
add a comment |
$begingroup$
In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$
For which values of $a$ we will get two different roots?
systems-of-equations roots quadratics absolute-value
$endgroup$
In given the following system of equations:
$$ |x-1| > 2x+2 $$
$$ x^2 + ax + a -1 = 0 $$
For which values of $a$ we will get two different roots?
systems-of-equations roots quadratics absolute-value
systems-of-equations roots quadratics absolute-value
edited Jan 26 at 16:49
Michael Rozenberg
108k1895200
108k1895200
asked Jan 26 at 16:29
StackUserStackUser
61
61
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43
add a comment |
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$
$endgroup$
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
add a comment |
$begingroup$
The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.
Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.
So if $frac43<a<2$, the equation has two different roots satisfying the inequality.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088452%2ffor-which-values-of-a-we-will-get-two-different-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$
$endgroup$
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
add a comment |
$begingroup$
The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$
$endgroup$
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
add a comment |
$begingroup$
The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$
$endgroup$
The first gives
$$x-1>2x+2$$ or $$x-1<-2x-2,$$ which gives $$x<-frac{1}{3}.$$
Now, let $f(x)=x^2+ax+a-1$ and solve the following system:
$$fleft(-frac{1}{3}right)>0$$
$$-frac{a}{2}<-frac{1}{3}$$ and
$$a^2-4(a-1)>0.$$
answered Jan 26 at 16:45
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
add a comment |
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
Why you want that $f(-frac{1}{3}) > 0 $ ?
$endgroup$
– StackUser
Jan 26 at 21:31
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
$begingroup$
@StackUser Because we need that roots of the quadratic equation would be less that $-frac{1}{3}.$ Draw the graph of $f$.
$endgroup$
– Michael Rozenberg
Jan 26 at 21:38
add a comment |
$begingroup$
The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.
Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.
So if $frac43<a<2$, the equation has two different roots satisfying the inequality.
$endgroup$
add a comment |
$begingroup$
The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.
Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.
So if $frac43<a<2$, the equation has two different roots satisfying the inequality.
$endgroup$
add a comment |
$begingroup$
The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.
Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.
So if $frac43<a<2$, the equation has two different roots satisfying the inequality.
$endgroup$
The equation has two roots $x_1=-1$ and $x_2=1-a$. It is easy to see $x_1neq x_2$ if $aneq 2$.
Clearly if $x=x_1$, then the inequality $|x-1|>2x+2$ holds. For $x=x_2$, then the inequality $|x-1|>2x+2$ becomes
$$ |a|>4-2a. tag{1}$$
If $age2$, (1) holds. If $0le a<2$, then the solution of (1) is $frac43<a<2$. If $a<0$, then (1) does not hold.
So if $frac43<a<2$, the equation has two different roots satisfying the inequality.
answered Jan 26 at 16:52
xpaulxpaul
23.3k24655
23.3k24655
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088452%2ffor-which-values-of-a-we-will-get-two-different-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use the fact that we get two different real roots when $b^2-4ac gt 0.$
$endgroup$
– Mohammad Zuhair Khan
Jan 26 at 16:31
$begingroup$
What do you need the first inequality for?
$endgroup$
– Dr. Mathva
Jan 26 at 16:43