$ I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt$ is always zero for $rin[0,1)$. Why?












27












$begingroup$


For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$

Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.



This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Dr.SonnhardGraubner Edited
    $endgroup$
    – amsmath
    Jan 26 at 17:23










  • $begingroup$
    I think your integral isn't zero
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 26 at 17:31










  • $begingroup$
    @Dr.SonnhardGraubner Well, that was helpful... Why?
    $endgroup$
    – amsmath
    Jan 26 at 17:33








  • 14




    $begingroup$
    @Dr.SonnhardGraubner: I think the integral is zero.
    $endgroup$
    – Larry
    Jan 26 at 18:01






  • 3




    $begingroup$
    @Dr.SonnhardGraubner You gave us the proof below. ;-)
    $endgroup$
    – amsmath
    Jan 26 at 18:08
















27












$begingroup$


For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$

Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.



This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Dr.SonnhardGraubner Edited
    $endgroup$
    – amsmath
    Jan 26 at 17:23










  • $begingroup$
    I think your integral isn't zero
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 26 at 17:31










  • $begingroup$
    @Dr.SonnhardGraubner Well, that was helpful... Why?
    $endgroup$
    – amsmath
    Jan 26 at 17:33








  • 14




    $begingroup$
    @Dr.SonnhardGraubner: I think the integral is zero.
    $endgroup$
    – Larry
    Jan 26 at 18:01






  • 3




    $begingroup$
    @Dr.SonnhardGraubner You gave us the proof below. ;-)
    $endgroup$
    – amsmath
    Jan 26 at 18:08














27












27








27


9



$begingroup$


For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$

Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.



This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.










share|cite|improve this question











$endgroup$




For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$

Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.



This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.







real-analysis integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 at 7:40









Asaf Karagila

307k33438769




307k33438769










asked Jan 26 at 17:16









amsmathamsmath

2,842417




2,842417












  • $begingroup$
    @Dr.SonnhardGraubner Edited
    $endgroup$
    – amsmath
    Jan 26 at 17:23










  • $begingroup$
    I think your integral isn't zero
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 26 at 17:31










  • $begingroup$
    @Dr.SonnhardGraubner Well, that was helpful... Why?
    $endgroup$
    – amsmath
    Jan 26 at 17:33








  • 14




    $begingroup$
    @Dr.SonnhardGraubner: I think the integral is zero.
    $endgroup$
    – Larry
    Jan 26 at 18:01






  • 3




    $begingroup$
    @Dr.SonnhardGraubner You gave us the proof below. ;-)
    $endgroup$
    – amsmath
    Jan 26 at 18:08


















  • $begingroup$
    @Dr.SonnhardGraubner Edited
    $endgroup$
    – amsmath
    Jan 26 at 17:23










  • $begingroup$
    I think your integral isn't zero
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 26 at 17:31










  • $begingroup$
    @Dr.SonnhardGraubner Well, that was helpful... Why?
    $endgroup$
    – amsmath
    Jan 26 at 17:33








  • 14




    $begingroup$
    @Dr.SonnhardGraubner: I think the integral is zero.
    $endgroup$
    – Larry
    Jan 26 at 18:01






  • 3




    $begingroup$
    @Dr.SonnhardGraubner You gave us the proof below. ;-)
    $endgroup$
    – amsmath
    Jan 26 at 18:08
















$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23




$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23












$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31




$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31












$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33






$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33






14




14




$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01




$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01




3




3




$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08




$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08










8 Answers
8






active

oldest

votes


















18












$begingroup$

An alternative proof using complex methods:



For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}

as desired.






share|cite|improve this answer









$endgroup$





















    14












    $begingroup$

    (Since it is not mentioned yet) The function
    $$
    P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
    $$
    is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
    $$
    u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
    $$
    gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.



    Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
    $$
    rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
    $$
    for all $0le r<1$ and $0le thetale 2pi$. Using the fact
    $$
    frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
    $$
    it follows
    $$
    frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
    $$
    By letting $theta =0$, we obtain
    $$
    frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$

    or equivalently
    $$
    int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
      $endgroup$
      – amsmath
      Jan 26 at 19:18










    • $begingroup$
      @amsmath I hope this will help :-)
      $endgroup$
      – Song
      Jan 26 at 21:31



















    13












    $begingroup$

    It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.



    Here, consider the integral
    $$
    vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
    $$

    where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      interesting physical interpretation (+1)
      $endgroup$
      – G Cab
      Jan 26 at 19:43



















    8












    $begingroup$

    With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
    $$
    begin{align}
    int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
    &=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
    &=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
    &=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
    &=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
    &=left{begin{array}{}
    0&text{if }|r|lt1\
    frac{2pi}r&text{if }|r|gt1
    end{array}right.tag5
    end{align}
    $$

    Explanation:
    $(1)$: partial fractions
    $(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
    $(3)$: $bargamma$ is in the opposite direction from $gamma$
    $(4)$: partial fractions
    $(5)$: $2pi i$ times the sum of the residues inside $gamma$






    share|cite|improve this answer











    $endgroup$





















      5












      $begingroup$

      Here is yet another slightly different approach.



      Let
      $$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
      Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
      begin{align}
      P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
      &= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
      &= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
      &= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
      &= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
      &= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
      &= sum_{n = 0}^infty r^n cos (n + 1)t.
      end{align}



      Now
      begin{align}
      int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
      end{align}






      share|cite|improve this answer









      $endgroup$





















        4












        $begingroup$

        Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.





        We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$






        share|cite|improve this answer









        $endgroup$





















          3












          $begingroup$

          Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
          Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
          left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$
          and this is rational
          The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
          ^{-1}left(frac{a (r+1)}{1-r}right)}{4
          r}+frac{tan ^{-1}left(frac{a
          (r+1)}{r-1}right)}{4 r}right)$$






          share|cite|improve this answer











          $endgroup$









          • 5




            $begingroup$
            Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
            $endgroup$
            – amsmath
            Jan 26 at 18:04





















          2












          $begingroup$

          Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:



          begin{align}
          I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
          &= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
          &= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
          &= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
          end{align}



          Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
          $$operatorname{Res}(f,r) = -frac1{2r^2}$$
          so $I'(r) = 0$ for $r in [0,1rangle$.



          We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088503%2fir-int-02-pi-frac-cost-r1-2r-cos-t-r2-dt-is-always-zero%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            8 Answers
            8






            active

            oldest

            votes








            8 Answers
            8






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            18












            $begingroup$

            An alternative proof using complex methods:



            For $0< r < 1$ let
            $$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
            where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
            $$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
            holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
            $$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
            This implies
            begin{align}
            int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
            &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
            &= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
            end{align}

            as desired.






            share|cite|improve this answer









            $endgroup$


















              18












              $begingroup$

              An alternative proof using complex methods:



              For $0< r < 1$ let
              $$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
              where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
              $$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
              holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
              $$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
              This implies
              begin{align}
              int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
              &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
              &= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
              end{align}

              as desired.






              share|cite|improve this answer









              $endgroup$
















                18












                18








                18





                $begingroup$

                An alternative proof using complex methods:



                For $0< r < 1$ let
                $$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
                where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
                $$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
                holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
                $$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
                This implies
                begin{align}
                int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
                &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
                &= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
                end{align}

                as desired.






                share|cite|improve this answer









                $endgroup$



                An alternative proof using complex methods:



                For $0< r < 1$ let
                $$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
                where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
                $$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
                holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
                $$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
                This implies
                begin{align}
                int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
                &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
                &= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
                end{align}

                as desired.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 26 at 18:32









                ComplexYetTrivialComplexYetTrivial

                4,9682631




                4,9682631























                    14












                    $begingroup$

                    (Since it is not mentioned yet) The function
                    $$
                    P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
                    $$
                    is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
                    $$
                    u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
                    $$
                    gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.



                    Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
                    $$
                    rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
                    $$
                    for all $0le r<1$ and $0le thetale 2pi$. Using the fact
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
                    $$
                    it follows
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
                    $$
                    By letting $theta =0$, we obtain
                    $$
                    frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$

                    or equivalently
                    $$
                    int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                      $endgroup$
                      – amsmath
                      Jan 26 at 19:18










                    • $begingroup$
                      @amsmath I hope this will help :-)
                      $endgroup$
                      – Song
                      Jan 26 at 21:31
















                    14












                    $begingroup$

                    (Since it is not mentioned yet) The function
                    $$
                    P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
                    $$
                    is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
                    $$
                    u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
                    $$
                    gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.



                    Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
                    $$
                    rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
                    $$
                    for all $0le r<1$ and $0le thetale 2pi$. Using the fact
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
                    $$
                    it follows
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
                    $$
                    By letting $theta =0$, we obtain
                    $$
                    frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$

                    or equivalently
                    $$
                    int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                      $endgroup$
                      – amsmath
                      Jan 26 at 19:18










                    • $begingroup$
                      @amsmath I hope this will help :-)
                      $endgroup$
                      – Song
                      Jan 26 at 21:31














                    14












                    14








                    14





                    $begingroup$

                    (Since it is not mentioned yet) The function
                    $$
                    P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
                    $$
                    is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
                    $$
                    u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
                    $$
                    gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.



                    Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
                    $$
                    rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
                    $$
                    for all $0le r<1$ and $0le thetale 2pi$. Using the fact
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
                    $$
                    it follows
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
                    $$
                    By letting $theta =0$, we obtain
                    $$
                    frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$

                    or equivalently
                    $$
                    int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$






                    share|cite|improve this answer











                    $endgroup$



                    (Since it is not mentioned yet) The function
                    $$
                    P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
                    $$
                    is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
                    $$
                    u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
                    $$
                    gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.



                    Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
                    $$
                    rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
                    $$
                    for all $0le r<1$ and $0le thetale 2pi$. Using the fact
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
                    $$
                    it follows
                    $$
                    frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
                    $$
                    By letting $theta =0$, we obtain
                    $$
                    frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$

                    or equivalently
                    $$
                    int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 26 at 21:31

























                    answered Jan 26 at 18:51









                    SongSong

                    18.5k21551




                    18.5k21551












                    • $begingroup$
                      That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                      $endgroup$
                      – amsmath
                      Jan 26 at 19:18










                    • $begingroup$
                      @amsmath I hope this will help :-)
                      $endgroup$
                      – Song
                      Jan 26 at 21:31


















                    • $begingroup$
                      That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                      $endgroup$
                      – amsmath
                      Jan 26 at 19:18










                    • $begingroup$
                      @amsmath I hope this will help :-)
                      $endgroup$
                      – Song
                      Jan 26 at 21:31
















                    $begingroup$
                    That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                    $endgroup$
                    – amsmath
                    Jan 26 at 19:18




                    $begingroup$
                    That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
                    $endgroup$
                    – amsmath
                    Jan 26 at 19:18












                    $begingroup$
                    @amsmath I hope this will help :-)
                    $endgroup$
                    – Song
                    Jan 26 at 21:31




                    $begingroup$
                    @amsmath I hope this will help :-)
                    $endgroup$
                    – Song
                    Jan 26 at 21:31











                    13












                    $begingroup$

                    It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.



                    Here, consider the integral
                    $$
                    vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
                    $$

                    where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      interesting physical interpretation (+1)
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:43
















                    13












                    $begingroup$

                    It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.



                    Here, consider the integral
                    $$
                    vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
                    $$

                    where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      interesting physical interpretation (+1)
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:43














                    13












                    13








                    13





                    $begingroup$

                    It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.



                    Here, consider the integral
                    $$
                    vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
                    $$

                    where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.






                    share|cite|improve this answer









                    $endgroup$



                    It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.



                    Here, consider the integral
                    $$
                    vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
                    $$

                    where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 26 at 19:33









                    HusseinHussein

                    43114




                    43114












                    • $begingroup$
                      interesting physical interpretation (+1)
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:43


















                    • $begingroup$
                      interesting physical interpretation (+1)
                      $endgroup$
                      – G Cab
                      Jan 26 at 19:43
















                    $begingroup$
                    interesting physical interpretation (+1)
                    $endgroup$
                    – G Cab
                    Jan 26 at 19:43




                    $begingroup$
                    interesting physical interpretation (+1)
                    $endgroup$
                    – G Cab
                    Jan 26 at 19:43











                    8












                    $begingroup$

                    With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
                    $$
                    begin{align}
                    int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
                    &=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
                    &=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
                    &=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
                    &=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
                    &=left{begin{array}{}
                    0&text{if }|r|lt1\
                    frac{2pi}r&text{if }|r|gt1
                    end{array}right.tag5
                    end{align}
                    $$

                    Explanation:
                    $(1)$: partial fractions
                    $(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
                    $(3)$: $bargamma$ is in the opposite direction from $gamma$
                    $(4)$: partial fractions
                    $(5)$: $2pi i$ times the sum of the residues inside $gamma$






                    share|cite|improve this answer











                    $endgroup$


















                      8












                      $begingroup$

                      With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
                      $$
                      begin{align}
                      int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
                      &=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
                      &=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
                      &=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
                      &=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
                      &=left{begin{array}{}
                      0&text{if }|r|lt1\
                      frac{2pi}r&text{if }|r|gt1
                      end{array}right.tag5
                      end{align}
                      $$

                      Explanation:
                      $(1)$: partial fractions
                      $(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
                      $(3)$: $bargamma$ is in the opposite direction from $gamma$
                      $(4)$: partial fractions
                      $(5)$: $2pi i$ times the sum of the residues inside $gamma$






                      share|cite|improve this answer











                      $endgroup$
















                        8












                        8








                        8





                        $begingroup$

                        With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
                        $$
                        begin{align}
                        int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
                        &=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
                        &=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
                        &=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
                        &=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
                        &=left{begin{array}{}
                        0&text{if }|r|lt1\
                        frac{2pi}r&text{if }|r|gt1
                        end{array}right.tag5
                        end{align}
                        $$

                        Explanation:
                        $(1)$: partial fractions
                        $(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
                        $(3)$: $bargamma$ is in the opposite direction from $gamma$
                        $(4)$: partial fractions
                        $(5)$: $2pi i$ times the sum of the residues inside $gamma$






                        share|cite|improve this answer











                        $endgroup$



                        With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
                        $$
                        begin{align}
                        int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
                        &=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
                        &=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
                        &=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
                        &=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
                        &=left{begin{array}{}
                        0&text{if }|r|lt1\
                        frac{2pi}r&text{if }|r|gt1
                        end{array}right.tag5
                        end{align}
                        $$

                        Explanation:
                        $(1)$: partial fractions
                        $(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
                        $(3)$: $bargamma$ is in the opposite direction from $gamma$
                        $(4)$: partial fractions
                        $(5)$: $2pi i$ times the sum of the residues inside $gamma$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Jan 27 at 8:45

























                        answered Jan 27 at 8:24









                        robjohnrobjohn

                        269k27311638




                        269k27311638























                            5












                            $begingroup$

                            Here is yet another slightly different approach.



                            Let
                            $$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
                            Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
                            begin{align}
                            P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
                            &= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
                            &= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
                            &= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
                            &= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
                            &= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
                            &= sum_{n = 0}^infty r^n cos (n + 1)t.
                            end{align}



                            Now
                            begin{align}
                            int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
                            end{align}






                            share|cite|improve this answer









                            $endgroup$


















                              5












                              $begingroup$

                              Here is yet another slightly different approach.



                              Let
                              $$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
                              Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
                              begin{align}
                              P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
                              &= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
                              &= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
                              &= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
                              &= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
                              &= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
                              &= sum_{n = 0}^infty r^n cos (n + 1)t.
                              end{align}



                              Now
                              begin{align}
                              int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
                              end{align}






                              share|cite|improve this answer









                              $endgroup$
















                                5












                                5








                                5





                                $begingroup$

                                Here is yet another slightly different approach.



                                Let
                                $$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
                                Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
                                begin{align}
                                P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
                                &= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
                                &= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
                                &= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
                                &= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
                                &= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
                                &= sum_{n = 0}^infty r^n cos (n + 1)t.
                                end{align}



                                Now
                                begin{align}
                                int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
                                end{align}






                                share|cite|improve this answer









                                $endgroup$



                                Here is yet another slightly different approach.



                                Let
                                $$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
                                Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
                                begin{align}
                                P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
                                &= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
                                &= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
                                &= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
                                &= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
                                &= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
                                &= sum_{n = 0}^infty r^n cos (n + 1)t.
                                end{align}



                                Now
                                begin{align}
                                int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
                                end{align}







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Jan 27 at 3:30









                                omegadotomegadot

                                6,4342829




                                6,4342829























                                    4












                                    $begingroup$

                                    Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.





                                    We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$






                                    share|cite|improve this answer









                                    $endgroup$


















                                      4












                                      $begingroup$

                                      Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.





                                      We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$






                                      share|cite|improve this answer









                                      $endgroup$
















                                        4












                                        4








                                        4





                                        $begingroup$

                                        Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.





                                        We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$






                                        share|cite|improve this answer









                                        $endgroup$



                                        Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.





                                        We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Jan 27 at 8:37









                                        Paramanand SinghParamanand Singh

                                        50.9k557168




                                        50.9k557168























                                            3












                                            $begingroup$

                                            Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
                                            Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
                                            left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$
                                            and this is rational
                                            The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
                                            ^{-1}left(frac{a (r+1)}{1-r}right)}{4
                                            r}+frac{tan ^{-1}left(frac{a
                                            (r+1)}{r-1}right)}{4 r}right)$$






                                            share|cite|improve this answer











                                            $endgroup$









                                            • 5




                                              $begingroup$
                                              Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                              $endgroup$
                                              – amsmath
                                              Jan 26 at 18:04


















                                            3












                                            $begingroup$

                                            Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
                                            Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
                                            left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$
                                            and this is rational
                                            The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
                                            ^{-1}left(frac{a (r+1)}{1-r}right)}{4
                                            r}+frac{tan ^{-1}left(frac{a
                                            (r+1)}{r-1}right)}{4 r}right)$$






                                            share|cite|improve this answer











                                            $endgroup$









                                            • 5




                                              $begingroup$
                                              Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                              $endgroup$
                                              – amsmath
                                              Jan 26 at 18:04
















                                            3












                                            3








                                            3





                                            $begingroup$

                                            Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
                                            Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
                                            left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$
                                            and this is rational
                                            The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
                                            ^{-1}left(frac{a (r+1)}{1-r}right)}{4
                                            r}+frac{tan ^{-1}left(frac{a
                                            (r+1)}{r-1}right)}{4 r}right)$$






                                            share|cite|improve this answer











                                            $endgroup$



                                            Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
                                            Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
                                            left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$
                                            and this is rational
                                            The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
                                            ^{-1}left(frac{a (r+1)}{1-r}right)}{4
                                            r}+frac{tan ^{-1}left(frac{a
                                            (r+1)}{r-1}right)}{4 r}right)$$







                                            share|cite|improve this answer














                                            share|cite|improve this answer



                                            share|cite|improve this answer








                                            edited Jan 26 at 17:48

























                                            answered Jan 26 at 17:42









                                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                                            78k42866




                                            78k42866








                                            • 5




                                              $begingroup$
                                              Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                              $endgroup$
                                              – amsmath
                                              Jan 26 at 18:04
















                                            • 5




                                              $begingroup$
                                              Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                              $endgroup$
                                              – amsmath
                                              Jan 26 at 18:04










                                            5




                                            5




                                            $begingroup$
                                            Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                            $endgroup$
                                            – amsmath
                                            Jan 26 at 18:04






                                            $begingroup$
                                            Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
                                            $endgroup$
                                            – amsmath
                                            Jan 26 at 18:04













                                            2












                                            $begingroup$

                                            Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:



                                            begin{align}
                                            I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
                                            &= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
                                            &= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
                                            &= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
                                            end{align}



                                            Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
                                            $$operatorname{Res}(f,r) = -frac1{2r^2}$$
                                            so $I'(r) = 0$ for $r in [0,1rangle$.



                                            We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$






                                            share|cite|improve this answer











                                            $endgroup$


















                                              2












                                              $begingroup$

                                              Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:



                                              begin{align}
                                              I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
                                              &= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
                                              &= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
                                              &= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
                                              end{align}



                                              Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
                                              $$operatorname{Res}(f,r) = -frac1{2r^2}$$
                                              so $I'(r) = 0$ for $r in [0,1rangle$.



                                              We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$






                                              share|cite|improve this answer











                                              $endgroup$
















                                                2












                                                2








                                                2





                                                $begingroup$

                                                Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:



                                                begin{align}
                                                I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
                                                &= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
                                                &= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
                                                &= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
                                                end{align}



                                                Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
                                                $$operatorname{Res}(f,r) = -frac1{2r^2}$$
                                                so $I'(r) = 0$ for $r in [0,1rangle$.



                                                We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$






                                                share|cite|improve this answer











                                                $endgroup$



                                                Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:



                                                begin{align}
                                                I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
                                                &= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
                                                &= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
                                                &= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
                                                end{align}



                                                Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
                                                $$operatorname{Res}(f,r) = -frac1{2r^2}$$
                                                so $I'(r) = 0$ for $r in [0,1rangle$.



                                                We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$







                                                share|cite|improve this answer














                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Jan 30 at 8:05

























                                                answered Jan 27 at 18:19









                                                mechanodroidmechanodroid

                                                28.9k62548




                                                28.9k62548






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088503%2fir-int-02-pi-frac-cost-r1-2r-cos-t-r2-dt-is-always-zero%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    'app-layout' is not a known element: how to share Component with different Modules

                                                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                                    WPF add header to Image with URL pettitions [duplicate]