$ I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt$ is always zero for $rin[0,1)$. Why?
$begingroup$
For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$
Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.
This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.
real-analysis integration definite-integrals
$endgroup$
|
show 3 more comments
$begingroup$
For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$
Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.
This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.
real-analysis integration definite-integrals
$endgroup$
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
14
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
3
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08
|
show 3 more comments
$begingroup$
For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$
Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.
This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.
real-analysis integration definite-integrals
$endgroup$
For $rin [0,1)$ define
$$
I(r) = int_0^{2pi}frac{cos(t) - r}{1 - 2rcos t + r^2},dt.
$$
Numerical experiments hint at $I(r) = 0$ for all $rin [0,1)$ but I can't show this analytically.
This integral appears when you compute the Cauchy transform of $overline z$ over the unit circle. The latter therefore seems to be constantly zero.
real-analysis integration definite-integrals
real-analysis integration definite-integrals
edited Jan 28 at 7:40
Asaf Karagila♦
307k33438769
307k33438769
asked Jan 26 at 17:16
amsmathamsmath
2,842417
2,842417
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
14
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
3
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08
|
show 3 more comments
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
14
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
3
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
14
14
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
3
3
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08
|
show 3 more comments
8 Answers
8
active
oldest
votes
$begingroup$
An alternative proof using complex methods:
For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}
as desired.
$endgroup$
add a comment |
$begingroup$
(Since it is not mentioned yet) The function
$$
P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
$$
u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
$$ gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.
Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
$$
rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
$$ for all $0le r<1$ and $0le thetale 2pi$. Using the fact
$$
frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
$$ it follows
$$
frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
$$ By letting $theta =0$, we obtain
$$
frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$
or equivalently
$$
int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$
$endgroup$
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
add a comment |
$begingroup$
It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.
Here, consider the integral
$$
vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
$$
where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.
$endgroup$
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
add a comment |
$begingroup$
With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
$$
begin{align}
int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
&=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
&=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
&=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
&=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
&=left{begin{array}{}
0&text{if }|r|lt1\
frac{2pi}r&text{if }|r|gt1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: partial fractions
$(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
$(3)$: $bargamma$ is in the opposite direction from $gamma$
$(4)$: partial fractions
$(5)$: $2pi i$ times the sum of the residues inside $gamma$
$endgroup$
add a comment |
$begingroup$
Here is yet another slightly different approach.
Let
$$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
begin{align}
P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
&= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
&= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
&= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
&= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
&= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
&= sum_{n = 0}^infty r^n cos (n + 1)t.
end{align}
Now
begin{align}
int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
end{align}
$endgroup$
add a comment |
$begingroup$
Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.
We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$
$endgroup$
add a comment |
$begingroup$
Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$ and this is rational
The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
^{-1}left(frac{a (r+1)}{1-r}right)}{4
r}+frac{tan ^{-1}left(frac{a
(r+1)}{r-1}right)}{4 r}right)$$
$endgroup$
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
add a comment |
$begingroup$
Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:
begin{align}
I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
&= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
&= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
&= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
end{align}
Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
$$operatorname{Res}(f,r) = -frac1{2r^2}$$
so $I'(r) = 0$ for $r in [0,1rangle$.
We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088503%2fir-int-02-pi-frac-cost-r1-2r-cos-t-r2-dt-is-always-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
8 Answers
8
active
oldest
votes
8 Answers
8
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An alternative proof using complex methods:
For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}
as desired.
$endgroup$
add a comment |
$begingroup$
An alternative proof using complex methods:
For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}
as desired.
$endgroup$
add a comment |
$begingroup$
An alternative proof using complex methods:
For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}
as desired.
$endgroup$
An alternative proof using complex methods:
For $0< r < 1$ let
$$ f_r colon B_frac{1}{r} (0) to mathbb{C} , , , f_r(z) = frac{- ln(1-rz)}{z} , , $$
where $f_r(0) = r $ . Then $f_r$ is holomorphic, so
$$ I(r) equiv - int limits_0^{2pi} ln(1-r mathrm{e}^{mathrm{i}t}) , mathrm{d} t = - mathrm{i} int limits_{S^1} f_r(z) , mathrm{d} z = 0 $$
holds by Cauchy's theorem. If you are not familiar with complex analysis, you can also show this using the Taylor series of the logarithm:
$$ I(r) = sum limits_{n=1}^infty frac{r^n}{n} int limits_0^{2pi} mathrm{e}^{mathrm{i} n t} , mathrm{d} t = 0 , . $$
This implies
begin{align}
int limits_0^{2pi} frac{cos(t) - r}{1 - 2 r cos(t) + r^2} , mathrm{d} t &= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln(1 - 2 r cos(t) + r^2) , mathrm{d} t \
&= - frac{1}{2} frac{mathrm{d}}{mathrm{d} r} int limits_0^{2pi} ln[(1 -r mathrm{e}^{mathrm{i} t})(1 -r mathrm{e}^{-mathrm{i} t})] , mathrm{d} t \
&= frac{mathrm{d}}{mathrm{d} r} I(r) = frac{mathrm{d}}{mathrm{d} r} 0 = 0
end{align}
as desired.
answered Jan 26 at 18:32
ComplexYetTrivialComplexYetTrivial
4,9682631
4,9682631
add a comment |
add a comment |
$begingroup$
(Since it is not mentioned yet) The function
$$
P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
$$
u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
$$ gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.
Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
$$
rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
$$ for all $0le r<1$ and $0le thetale 2pi$. Using the fact
$$
frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
$$ it follows
$$
frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
$$ By letting $theta =0$, we obtain
$$
frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$
or equivalently
$$
int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$
$endgroup$
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
add a comment |
$begingroup$
(Since it is not mentioned yet) The function
$$
P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
$$
u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
$$ gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.
Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
$$
rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
$$ for all $0le r<1$ and $0le thetale 2pi$. Using the fact
$$
frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
$$ it follows
$$
frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
$$ By letting $theta =0$, we obtain
$$
frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$
or equivalently
$$
int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$
$endgroup$
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
add a comment |
$begingroup$
(Since it is not mentioned yet) The function
$$
P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
$$
u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
$$ gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.
Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
$$
rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
$$ for all $0le r<1$ and $0le thetale 2pi$. Using the fact
$$
frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
$$ it follows
$$
frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
$$ By letting $theta =0$, we obtain
$$
frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$
or equivalently
$$
int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$
$endgroup$
(Since it is not mentioned yet) The function
$$
P_r(t) = sum_{n=-infty}^infty r^{|n|} e^{int} =frac{1-r^2}{1-2rcos t +t^2},quad0le r<1, 0le tle 2pi
$$ is called the Poisson kernel. For any continuous function $f:[0,2pi]to Bbb C$ the Poisson integral
$$
u(r,theta) = frac{1}{2pi i}int_0^{2pi} f(t)P_r(theta-t)mathrm{d}ttag{*}
$$ gives the unique solution of the Dirichlet problem $triangle u =0, limlimits_{rto 1^-}u(r,theta)=f(theta)$.
Let $u(r,theta)=rcos theta$. Since it is a real part of the analytic function $z=r e^{itheta}$, we find that $$triangle u=0, limlimits_{rto 1^-}u(r,theta)=cos theta.$$ By $text{(*)}$ it follows that
$$
rcos theta =frac{1}{2pi}int_0^{2pi} frac{cos t(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t
$$ for all $0le r<1$ and $0le thetale 2pi$. Using the fact
$$
frac{1}{2pi}int_0^{2pi} frac{1-r^2}{1-2rcos (t-theta)+r^2}mathrm{d}t=frac{1}{2pi}sum_{n=-infty}^infty r^{|n|} int_0^{2pi}e^{in(t-theta)}mathrm{d}t =1,
$$ it follows
$$
frac{1}{2pi}int_0^{2pi} frac{left(cos t-rcos thetaright)(1-r^2)}{1-2rcos (t-theta)+r^2}mathrm{d}t =0.
$$ By letting $theta =0$, we obtain
$$
frac{1-r^2}{2pi }int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0,$$
or equivalently
$$
int_0^{2pi} frac{cos t-r}{1-2rcos t+r^2}mathrm{d}t =0.$$
edited Jan 26 at 21:31
answered Jan 26 at 18:51
SongSong
18.5k21551
18.5k21551
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
add a comment |
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
That is also very nice. Thank you. In fact, I tried to fuddle around with the Poisson kernel, but I did not see things as clear as you, obviously. ;-)
$endgroup$
– amsmath
Jan 26 at 19:18
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
$begingroup$
@amsmath I hope this will help :-)
$endgroup$
– Song
Jan 26 at 21:31
add a comment |
$begingroup$
It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.
Here, consider the integral
$$
vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
$$
where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.
$endgroup$
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
add a comment |
$begingroup$
It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.
Here, consider the integral
$$
vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
$$
where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.
$endgroup$
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
add a comment |
$begingroup$
It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.
Here, consider the integral
$$
vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
$$
where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.
$endgroup$
It seems to me that this result is a particular case (or rather 1D adaptation) of Newton's shell theorem. In 2D, the theorem states that no net gravitational force is perceived by objects located inside a uniform hollow sphere.
Here, consider the integral
$$
vec I(M) = int_{Xin C}frac{vec{MX}}{MX^2}mathrm ds
$$
where $M$ is a point at a distance $r<1$ away from the center $O$ of the unit circle $C$, and $mathrm ds$ is a length element of the circle. What you are asking for is a component of $vec I$, the one directed along $vec{OM}$. In fact, we have $vec I=vec 0$. There is a nice geometric proof of this in 2D due to Newton; see here. You can try to adapt it to 1D.
answered Jan 26 at 19:33
HusseinHussein
43114
43114
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
add a comment |
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
$begingroup$
interesting physical interpretation (+1)
$endgroup$
– G Cab
Jan 26 at 19:43
add a comment |
$begingroup$
With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
$$
begin{align}
int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
&=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
&=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
&=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
&=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
&=left{begin{array}{}
0&text{if }|r|lt1\
frac{2pi}r&text{if }|r|gt1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: partial fractions
$(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
$(3)$: $bargamma$ is in the opposite direction from $gamma$
$(4)$: partial fractions
$(5)$: $2pi i$ times the sum of the residues inside $gamma$
$endgroup$
add a comment |
$begingroup$
With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
$$
begin{align}
int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
&=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
&=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
&=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
&=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
&=left{begin{array}{}
0&text{if }|r|lt1\
frac{2pi}r&text{if }|r|gt1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: partial fractions
$(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
$(3)$: $bargamma$ is in the opposite direction from $gamma$
$(4)$: partial fractions
$(5)$: $2pi i$ times the sum of the residues inside $gamma$
$endgroup$
add a comment |
$begingroup$
With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
$$
begin{align}
int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
&=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
&=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
&=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
&=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
&=left{begin{array}{}
0&text{if }|r|lt1\
frac{2pi}r&text{if }|r|gt1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: partial fractions
$(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
$(3)$: $bargamma$ is in the opposite direction from $gamma$
$(4)$: partial fractions
$(5)$: $2pi i$ times the sum of the residues inside $gamma$
$endgroup$
With $gamma$ being the counter-clockwise unit circle and $bargamma$ being the clockwise unit circle,
$$
begin{align}
int_0^{2pi}frac{r-cos(t)}{1-2rcos(t)+r^2},mathrm{d}t
&=int_0^{2pi}frac12left(frac1{r-e^{it}}+frac1{r-e^{-it}}right)mathrm{d}ttag1\
&=frac1{2i}int_gammafrac{,mathrm{d}z}{z(r-z)}-frac1{2i}int_{bargamma}frac{,mathrm{d}z}{z(r-z)}tag2\
&=frac1iint_gammafrac{,mathrm{d}z}{z(r-z)}tag3\
&=frac1{ir}int_gammaleft(frac1z-frac1{z-r}right)mathrm{d}ztag4\
&=left{begin{array}{}
0&text{if }|r|lt1\
frac{2pi}r&text{if }|r|gt1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: partial fractions
$(2)$: $z=e^{it}$ in the left integral and $z=e^{-it}$ in the right integral
$(3)$: $bargamma$ is in the opposite direction from $gamma$
$(4)$: partial fractions
$(5)$: $2pi i$ times the sum of the residues inside $gamma$
edited Jan 27 at 8:45
answered Jan 27 at 8:24
robjohn♦robjohn
269k27311638
269k27311638
add a comment |
add a comment |
$begingroup$
Here is yet another slightly different approach.
Let
$$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
begin{align}
P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
&= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
&= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
&= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
&= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
&= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
&= sum_{n = 0}^infty r^n cos (n + 1)t.
end{align}
Now
begin{align}
int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
end{align}
$endgroup$
add a comment |
$begingroup$
Here is yet another slightly different approach.
Let
$$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
begin{align}
P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
&= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
&= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
&= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
&= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
&= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
&= sum_{n = 0}^infty r^n cos (n + 1)t.
end{align}
Now
begin{align}
int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
end{align}
$endgroup$
add a comment |
$begingroup$
Here is yet another slightly different approach.
Let
$$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
begin{align}
P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
&= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
&= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
&= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
&= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
&= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
&= sum_{n = 0}^infty r^n cos (n + 1)t.
end{align}
Now
begin{align}
int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
end{align}
$endgroup$
Here is yet another slightly different approach.
Let
$$P_r(t) = frac{cos t - r}{1 - 2r cos t + r^2}, qquad r in [0,1).$$
Using $cos t = (e^{it} + e^{-it})/2$, we can rewrite $P_r(t)$ as
begin{align}
P_r (t) &= frac{1}{2} frac{(e^{it} + e^{-it}) - 2r}{1 - r(e^{it} + e^{-it}) + r^2}\
&= -frac{1}{2} frac{2r - e^{it} - e^{-it}}{(r - e^{it})(r - e^{-it})}\
&= -frac{1}{2} left [frac{1}{r - e^{it}} + frac{1}{r - e^{-it}} right ]\
&= frac{1}{2} left [frac{e^{-it}}{1 - r e^{-it}} + frac{e^{it}}{1 - r e^{it}} right ]\
&= frac{1}{2} left [e^{-it} sum_{n = 0}^infty r^n e^{-int} + e^{it} sum_{n = 0}^infty r^n e^{int} right ]\
&= sum_{n = 0}^infty r^n left (frac{e^{i(n + 1)t} + e^{-i(n + 1)t}}{2} right )\
&= sum_{n = 0}^infty r^n cos (n + 1)t.
end{align}
Now
begin{align}
int^{2pi}_0 P_r (t) , dt = int^{2 pi}_0 sum_{n = 0}^infty r^n cos (n + 1)t , dt = sum_{n = 0}^infty r^n int^{2pi}_0 cos (n + 1)t , dt = 0.
end{align}
answered Jan 27 at 3:30
omegadotomegadot
6,4342829
6,4342829
add a comment |
add a comment |
$begingroup$
Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.
We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$
$endgroup$
add a comment |
$begingroup$
Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.
We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$
$endgroup$
add a comment |
$begingroup$
Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.
We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$
$endgroup$
Note that $$I(r) =frac{-1}{2r}int_{0}^{2pi}frac{1-2rcos t+r^2+r^2-1}{1-2rcos t+r^2},dt$$ which is same as $$-frac{pi} {r} +frac{1-r^2}{r}int_{0}^{pi}frac{dt}{1+r^2-2rcos t} $$ The integral above is equal to $$frac{pi} {sqrt{(1+r^2)^2-4r^2}}=frac{pi}{1-r^2} $$ and hence $I(r) =0$.
We have used the formula $$int_{0}^{pi}frac{dt}{a+bcos t} =frac{pi} {sqrt{a^2-b^2}},,a>|b|$$ which can be proved using the substitution $$(a+bcos t) (a-bcos u) =a^2-b^2$$
answered Jan 27 at 8:37
Paramanand SinghParamanand Singh
50.9k557168
50.9k557168
add a comment |
add a comment |
$begingroup$
Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$ and this is rational
The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
^{-1}left(frac{a (r+1)}{1-r}right)}{4
r}+frac{tan ^{-1}left(frac{a
(r+1)}{r-1}right)}{4 r}right)$$
$endgroup$
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
add a comment |
$begingroup$
Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$ and this is rational
The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
^{-1}left(frac{a (r+1)}{1-r}right)}{4
r}+frac{tan ^{-1}left(frac{a
(r+1)}{r-1}right)}{4 r}right)$$
$endgroup$
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
add a comment |
$begingroup$
Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$ and this is rational
The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
^{-1}left(frac{a (r+1)}{1-r}right)}{4
r}+frac{tan ^{-1}left(frac{a
(r+1)}{r-1}right)}{4 r}right)$$
$endgroup$
Hint: $$cos(t)=frac{1-a^2}{1+a^2}$$ and $$dt=frac{2da}{1+a^2}$$
Now your indefinite integral is given by $$int-frac{2 left(a^2 r+a^2+r-1right)}{left(a^2+1right)
left(a^2 r^2+2 a^2 r+a^2+r^2-2 r+1right)}da$$ and this is rational
The solution of this integral is given by $$-2 left(frac{tan ^{-1}(a)}{2 r}-frac{tan
^{-1}left(frac{a (r+1)}{1-r}right)}{4
r}+frac{tan ^{-1}left(frac{a
(r+1)}{r-1}right)}{4 r}right)$$
edited Jan 26 at 17:48
answered Jan 26 at 17:42
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78k42866
78k42866
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
add a comment |
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
5
5
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
$begingroup$
Thank you very much. So my integral is indeed zero. You can fuse the second and the third term to one term: $-tfrac 1{2r}arctan(tfrac{1+r}{1-r}a)$. The boundaries after substitution are zero and $infty$.
$endgroup$
– amsmath
Jan 26 at 18:04
add a comment |
$begingroup$
Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:
begin{align}
I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
&= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
&= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
&= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
end{align}
Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
$$operatorname{Res}(f,r) = -frac1{2r^2}$$
so $I'(r) = 0$ for $r in [0,1rangle$.
We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$
$endgroup$
add a comment |
$begingroup$
Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:
begin{align}
I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
&= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
&= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
&= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
end{align}
Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
$$operatorname{Res}(f,r) = -frac1{2r^2}$$
so $I'(r) = 0$ for $r in [0,1rangle$.
We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$
$endgroup$
add a comment |
$begingroup$
Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:
begin{align}
I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
&= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
&= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
&= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
end{align}
Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
$$operatorname{Res}(f,r) = -frac1{2r^2}$$
so $I'(r) = 0$ for $r in [0,1rangle$.
We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$
$endgroup$
Not sure why none of the answers mention this approach, but you can just take the derivative with respect to $r$:
begin{align}
I'(r) &= int_0^{2pi}frac{d}{dr}left(frac{cos t - r}{1 - 2rcos t + r^2}right),dt\
&= int_0^{2pi} frac{(r^2-1)-2rcos t + 2cos^2t}{(1 - 2rcos t + r^2)^2} \
&= frac1{i}int_{|z|=1} frac{(r^2-1)-r(z+z^{-1}) + frac12(z+z^{-1})^2}{(1 - r(z+z^{-1}) + r^2)^2}cdotfrac{dz}{z}\
&= frac1{i}int_{|z|=1} frac{z^4-2r z^3+2r^2z^2-2rz+1}{(r^2+1)z(z-r)^2left(z-frac1rright)^2},dz\
end{align}
Since $r in [0,1rangle$, the relevant residues are $$operatorname{Res}(f,0) = frac1{2r^2}$$
$$operatorname{Res}(f,r) = -frac1{2r^2}$$
so $I'(r) = 0$ for $r in [0,1rangle$.
We conclude that $I$ is constant on $[0,1rangle$. Hence $$I(r)=I(0) = int_0^{2pi}cos t,dt = 0$$
edited Jan 30 at 8:05
answered Jan 27 at 18:19
mechanodroidmechanodroid
28.9k62548
28.9k62548
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088503%2fir-int-02-pi-frac-cost-r1-2r-cos-t-r2-dt-is-always-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@Dr.SonnhardGraubner Edited
$endgroup$
– amsmath
Jan 26 at 17:23
$begingroup$
I think your integral isn't zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 26 at 17:31
$begingroup$
@Dr.SonnhardGraubner Well, that was helpful... Why?
$endgroup$
– amsmath
Jan 26 at 17:33
14
$begingroup$
@Dr.SonnhardGraubner: I think the integral is zero.
$endgroup$
– Larry
Jan 26 at 18:01
3
$begingroup$
@Dr.SonnhardGraubner You gave us the proof below. ;-)
$endgroup$
– amsmath
Jan 26 at 18:08