Determinant of a matrix whose elements are trigonometric functions
$begingroup$
Calculate:
$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$
By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$
Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.
linear-algebra determinant
$endgroup$
add a comment |
$begingroup$
Calculate:
$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$
By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$
Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.
linear-algebra determinant
$endgroup$
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30
add a comment |
$begingroup$
Calculate:
$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$
By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$
Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.
linear-algebra determinant
$endgroup$
Calculate:
$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$
By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$
Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.
linear-algebra determinant
linear-algebra determinant
edited Jan 27 at 11:49


Chinnapparaj R
5,8082928
5,8082928
asked Jan 27 at 11:25
Tao XTao X
865
865
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30
add a comment |
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}
While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089445%2fdeterminant-of-a-matrix-whose-elements-are-trigonometric-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}
While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.
$endgroup$
add a comment |
$begingroup$
Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}
While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.
$endgroup$
add a comment |
$begingroup$
Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}
While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.
$endgroup$
Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}
While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.
edited Jan 27 at 11:51
answered Jan 27 at 11:46
Viktor GlombikViktor Glombik
1,2372528
1,2372528
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089445%2fdeterminant-of-a-matrix-whose-elements-are-trigonometric-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30