Determinant of a matrix whose elements are trigonometric functions












2












$begingroup$



Calculate:



$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$




By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$



Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
    $endgroup$
    – Servaes
    Jan 27 at 11:30


















2












$begingroup$



Calculate:



$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$




By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$



Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
    $endgroup$
    – Servaes
    Jan 27 at 11:30
















2












2








2





$begingroup$



Calculate:



$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$




By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$



Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.










share|cite|improve this question











$endgroup$





Calculate:



$$detbegin{pmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{pmatrix}
$$




By elementary row operation,it is equivalent to calculate
$$detbegin{pmatrix}
cosvarphi & sinvarphi & 0 & 0 \
0 & 0 & cos2varphi & sin2varphi \
-cos3varphi & -sin3varphi & 2cos3varphi & 2sin3varphi \
-2cos4varphi & -2sin4varphi & 3cos4varphi & 3sin4varphi
end{pmatrix}
$$



Though this form is a bit more convenient for Laplace Expansion, it still requires a lot of effort to obtain the result.







linear-algebra determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 11:49









Chinnapparaj R

5,8082928




5,8082928










asked Jan 27 at 11:25









Tao XTao X

865




865












  • $begingroup$
    I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
    $endgroup$
    – Servaes
    Jan 27 at 11:30




















  • $begingroup$
    I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
    $endgroup$
    – Servaes
    Jan 27 at 11:30


















$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30






$begingroup$
I would not say it is a lot of effort; knowing a few basic trigonometric identities makes it a few minutes worth of work at most. Did you try anything further?
$endgroup$
– Servaes
Jan 27 at 11:30












1 Answer
1






active

oldest

votes


















1












$begingroup$

Here's one way to do it:
begin{align*}
& begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
end{vmatrix} \
= & begin{vmatrix}
cosvarphi & sinvarphi & cosvarphi & sinvarphi \
0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
0 & 0 &0 & -tanvarphi
end{vmatrix} \
= & 4 tan^2varphi cos^2varphi sin^2varphi
= 4 sin^4varphi.
end{align*}

While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089445%2fdeterminant-of-a-matrix-whose-elements-are-trigonometric-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Here's one way to do it:
    begin{align*}
    & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
    cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
    cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
    cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
    cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
    0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
    0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
    0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
    end{vmatrix} \
    = & begin{vmatrix}
    cosvarphi & sinvarphi & cosvarphi & sinvarphi \
    0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
    0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
    0 & 0 &0 & -tanvarphi
    end{vmatrix} \
    = & 4 tan^2varphi cos^2varphi sin^2varphi
    = 4 sin^4varphi.
    end{align*}

    While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Here's one way to do it:
      begin{align*}
      & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
      cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
      cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
      cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
      cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
      0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
      0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
      0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
      end{vmatrix} \
      = & begin{vmatrix}
      cosvarphi & sinvarphi & cosvarphi & sinvarphi \
      0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
      0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
      0 & 0 &0 & -tanvarphi
      end{vmatrix} \
      = & 4 tan^2varphi cos^2varphi sin^2varphi
      = 4 sin^4varphi.
      end{align*}

      While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Here's one way to do it:
        begin{align*}
        & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
        cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
        0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & 0 &0 & -tanvarphi
        end{vmatrix} \
        = & 4 tan^2varphi cos^2varphi sin^2varphi
        = 4 sin^4varphi.
        end{align*}

        While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.






        share|cite|improve this answer











        $endgroup$



        Here's one way to do it:
        begin{align*}
        & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        cos2varphi & sin2varphi & 2cos2varphi & 2sin2varphi \
        cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        cos3varphi & sin3varphi & 3cos3varphi & 3sin3varphi \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
        cos4varphi & sin4varphi & 4cos4varphi & 4sin4varphi
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 2sinvarphi & 2cos3varphi & 3sin3varphi - frac{cos3varphi sinvarphi}{cosvarphi} \
        0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & frac{sin3varphi}{cosvarphi} & 3cos4varphi & 4sin4varphi - cos(4varphi)tan(x)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & 0 & -2 sin^2varphi (3 + 4 cos2varphi) & sin2varphi (4 cos2varphi - 1)
        end{vmatrix} \
        = & begin{vmatrix}
        cosvarphi & sinvarphi & cosvarphi & sinvarphi \
        0 & tanvarphi & cos2varphi & 2sin2varphi - frac{sinvarphicos2varphi}{cosvarphi} \
        0 & 0 & -4cosvarphisin^2varphi & sin3varphi - sinvarphi \
        0 & 0 &0 & -tanvarphi
        end{vmatrix} \
        = & 4 tan^2varphi cos^2varphi sin^2varphi
        = 4 sin^4varphi.
        end{align*}

        While it looks very complicated, notices that all terms of rows 2 - 4, which are above the diagonal, don't really matter, so don't have to be computed explicitly.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 27 at 11:51

























        answered Jan 27 at 11:46









        Viktor GlombikViktor Glombik

        1,2372528




        1,2372528






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089445%2fdeterminant-of-a-matrix-whose-elements-are-trigonometric-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory