Determinant of a matrix with trigonometric functions
$begingroup$
Prove:
det
$begin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=-2sin(a-b)sin(b-c)sin(c-a)
$.
I know that
$detbegin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=2cdot detbegin{pmatrix}
sin asin b & sin bsin c & sin csin a \
cos acos b & cos bcos c & cos ccos a \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}
$
Inspired by seeing the answers of Determinant of matrix with trigonometric functions, I try to tackle this problem likewise,but fail.
linear-algebra matrices determinant
$endgroup$
add a comment |
$begingroup$
Prove:
det
$begin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=-2sin(a-b)sin(b-c)sin(c-a)
$.
I know that
$detbegin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=2cdot detbegin{pmatrix}
sin asin b & sin bsin c & sin csin a \
cos acos b & cos bcos c & cos ccos a \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}
$
Inspired by seeing the answers of Determinant of matrix with trigonometric functions, I try to tackle this problem likewise,but fail.
linear-algebra matrices determinant
$endgroup$
add a comment |
$begingroup$
Prove:
det
$begin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=-2sin(a-b)sin(b-c)sin(c-a)
$.
I know that
$detbegin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=2cdot detbegin{pmatrix}
sin asin b & sin bsin c & sin csin a \
cos acos b & cos bcos c & cos ccos a \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}
$
Inspired by seeing the answers of Determinant of matrix with trigonometric functions, I try to tackle this problem likewise,but fail.
linear-algebra matrices determinant
$endgroup$
Prove:
det
$begin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=-2sin(a-b)sin(b-c)sin(c-a)
$.
I know that
$detbegin{pmatrix}
cos(a-b) & cos(b-c) & cos(c-a) \
cos(a+b) & cos(b+c) & cos(c+a) \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}=2cdot detbegin{pmatrix}
sin asin b & sin bsin c & sin csin a \
cos acos b & cos bcos c & cos ccos a \
sin(a+b) & sin(b+c) & sin(c+a)
end{pmatrix}
$
Inspired by seeing the answers of Determinant of matrix with trigonometric functions, I try to tackle this problem likewise,but fail.
linear-algebra matrices determinant
linear-algebra matrices determinant
edited Jan 27 at 11:59
Michael Rozenberg
109k1896200
109k1896200
asked Jan 27 at 10:54
Tao XTao X
865
865
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$det=sum_{cyc}(cos(a-b)cos(b+c)sin(a+c)-cos(a-b)sin(b+c)cos(c+a))=$$
$$=sum_{cyc}cos(a-b)sin(a+c-b-c)=sum_{cyc}cos(a-b)sin(a-b).$$
In another hand,
$$-2sin(c-a)sin(b-c)sin(a-b)=-(cos(2c-a-b)-cos(a-b))sin(a-b)=$$
$$=cos(a-b)sin(a-b)-frac{1}{2}(sin(2c-2b)+sin(2a-2c))=sum_{cyc}cos(a-b)sin(a-b)$$
and we are done.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089404%2fdeterminant-of-a-matrix-with-trigonometric-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$det=sum_{cyc}(cos(a-b)cos(b+c)sin(a+c)-cos(a-b)sin(b+c)cos(c+a))=$$
$$=sum_{cyc}cos(a-b)sin(a+c-b-c)=sum_{cyc}cos(a-b)sin(a-b).$$
In another hand,
$$-2sin(c-a)sin(b-c)sin(a-b)=-(cos(2c-a-b)-cos(a-b))sin(a-b)=$$
$$=cos(a-b)sin(a-b)-frac{1}{2}(sin(2c-2b)+sin(2a-2c))=sum_{cyc}cos(a-b)sin(a-b)$$
and we are done.
$endgroup$
add a comment |
$begingroup$
$$det=sum_{cyc}(cos(a-b)cos(b+c)sin(a+c)-cos(a-b)sin(b+c)cos(c+a))=$$
$$=sum_{cyc}cos(a-b)sin(a+c-b-c)=sum_{cyc}cos(a-b)sin(a-b).$$
In another hand,
$$-2sin(c-a)sin(b-c)sin(a-b)=-(cos(2c-a-b)-cos(a-b))sin(a-b)=$$
$$=cos(a-b)sin(a-b)-frac{1}{2}(sin(2c-2b)+sin(2a-2c))=sum_{cyc}cos(a-b)sin(a-b)$$
and we are done.
$endgroup$
add a comment |
$begingroup$
$$det=sum_{cyc}(cos(a-b)cos(b+c)sin(a+c)-cos(a-b)sin(b+c)cos(c+a))=$$
$$=sum_{cyc}cos(a-b)sin(a+c-b-c)=sum_{cyc}cos(a-b)sin(a-b).$$
In another hand,
$$-2sin(c-a)sin(b-c)sin(a-b)=-(cos(2c-a-b)-cos(a-b))sin(a-b)=$$
$$=cos(a-b)sin(a-b)-frac{1}{2}(sin(2c-2b)+sin(2a-2c))=sum_{cyc}cos(a-b)sin(a-b)$$
and we are done.
$endgroup$
$$det=sum_{cyc}(cos(a-b)cos(b+c)sin(a+c)-cos(a-b)sin(b+c)cos(c+a))=$$
$$=sum_{cyc}cos(a-b)sin(a+c-b-c)=sum_{cyc}cos(a-b)sin(a-b).$$
In another hand,
$$-2sin(c-a)sin(b-c)sin(a-b)=-(cos(2c-a-b)-cos(a-b))sin(a-b)=$$
$$=cos(a-b)sin(a-b)-frac{1}{2}(sin(2c-2b)+sin(2a-2c))=sum_{cyc}cos(a-b)sin(a-b)$$
and we are done.
answered Jan 27 at 11:58
Michael RozenbergMichael Rozenberg
109k1896200
109k1896200
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089404%2fdeterminant-of-a-matrix-with-trigonometric-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown